Metamath Proof Explorer


Theorem dvdsle

Description: The divisors of a positive integer are bounded by it. The proof does not use / . (Contributed by Paul Chapman, 21-Mar-2011)

Ref Expression
Assertion dvdsle M N M N M N

Proof

Step Hyp Ref Expression
1 breq2 M = if M M 1 N < M N < if M M 1
2 oveq2 M = if M M 1 n M = n if M M 1
3 2 neeq1d M = if M M 1 n M N n if M M 1 N
4 1 3 imbi12d M = if M M 1 N < M n M N N < if M M 1 n if M M 1 N
5 breq1 N = if N N 1 N < if M M 1 if N N 1 < if M M 1
6 neeq2 N = if N N 1 n if M M 1 N n if M M 1 if N N 1
7 5 6 imbi12d N = if N N 1 N < if M M 1 n if M M 1 N if N N 1 < if M M 1 n if M M 1 if N N 1
8 oveq1 n = if n n 1 n if M M 1 = if n n 1 if M M 1
9 8 neeq1d n = if n n 1 n if M M 1 if N N 1 if n n 1 if M M 1 if N N 1
10 9 imbi2d n = if n n 1 if N N 1 < if M M 1 n if M M 1 if N N 1 if N N 1 < if M M 1 if n n 1 if M M 1 if N N 1
11 1z 1
12 11 elimel if M M 1
13 1nn 1
14 13 elimel if N N 1
15 11 elimel if n n 1
16 12 14 15 dvdslelem if N N 1 < if M M 1 if n n 1 if M M 1 if N N 1
17 4 7 10 16 dedth3h M N n N < M n M N
18 17 3expia M N n N < M n M N
19 18 com23 M N N < M n n M N
20 19 3impia M N N < M n n M N
21 20 imp M N N < M n n M N
22 21 neneqd M N N < M n ¬ n M = N
23 22 nrexdv M N N < M ¬ n n M = N
24 nnz N N
25 divides M N M N n n M = N
26 24 25 sylan2 M N M N n n M = N
27 26 3adant3 M N N < M M N n n M = N
28 23 27 mtbird M N N < M ¬ M N
29 28 3expia M N N < M ¬ M N
30 29 con2d M N M N ¬ N < M
31 zre M M
32 nnre N N
33 lenlt M N M N ¬ N < M
34 31 32 33 syl2an M N M N ¬ N < M
35 30 34 sylibrd M N M N M N