| Step |
Hyp |
Ref |
Expression |
| 1 |
|
breq2 |
|
| 2 |
|
oveq2 |
|
| 3 |
2
|
neeq1d |
|
| 4 |
1 3
|
imbi12d |
|
| 5 |
|
breq1 |
|
| 6 |
|
neeq2 |
|
| 7 |
5 6
|
imbi12d |
|
| 8 |
|
oveq1 |
|
| 9 |
8
|
neeq1d |
|
| 10 |
9
|
imbi2d |
|
| 11 |
|
1z |
|
| 12 |
11
|
elimel |
|
| 13 |
|
1nn |
|
| 14 |
13
|
elimel |
|
| 15 |
11
|
elimel |
|
| 16 |
12 14 15
|
dvdslelem |
|
| 17 |
4 7 10 16
|
dedth3h |
|
| 18 |
17
|
3expia |
|
| 19 |
18
|
com23 |
|
| 20 |
19
|
3impia |
|
| 21 |
20
|
imp |
|
| 22 |
21
|
neneqd |
|
| 23 |
22
|
nrexdv |
|
| 24 |
|
nnz |
|
| 25 |
|
divides |
|
| 26 |
24 25
|
sylan2 |
|
| 27 |
26
|
3adant3 |
|
| 28 |
23 27
|
mtbird |
|
| 29 |
28
|
3expia |
|
| 30 |
29
|
con2d |
|
| 31 |
|
zre |
|
| 32 |
|
nnre |
|
| 33 |
|
lenlt |
|
| 34 |
31 32 33
|
syl2an |
|
| 35 |
30 34
|
sylibrd |
|