Metamath Proof Explorer


Theorem dvdsleabs

Description: The divisors of a nonzero integer are bounded by its absolute value. Theorem 1.1(i) in ApostolNT p. 14 (comparison property of the divides relation). (Contributed by Paul Chapman, 21-Mar-2011) (Proof shortened by Fan Zheng, 3-Jul-2016)

Ref Expression
Assertion dvdsleabs M N N 0 M N M N

Proof

Step Hyp Ref Expression
1 dvdsabsb M N M N M N
2 1 3adant3 M N N 0 M N M N
3 nnabscl N N 0 N
4 dvdsle M N M N M N
5 3 4 sylan2 M N N 0 M N M N
6 5 3impb M N N 0 M N M N
7 2 6 sylbid M N N 0 M N M N