Metamath Proof Explorer


Theorem dvdslelem

Description: Lemma for dvdsle . (Contributed by Paul Chapman, 21-Mar-2011)

Ref Expression
Hypotheses dvdslelem.1 M
dvdslelem.2 N
dvdslelem.3 K
Assertion dvdslelem N < M K M N

Proof

Step Hyp Ref Expression
1 dvdslelem.1 M
2 dvdslelem.2 N
3 dvdslelem.3 K
4 3 zrei K
5 0re 0
6 lelttric K 0 K 0 0 < K
7 4 5 6 mp2an K 0 0 < K
8 zgt0ge1 K 0 < K 1 K
9 3 8 ax-mp 0 < K 1 K
10 9 orbi2i K 0 0 < K K 0 1 K
11 7 10 mpbi K 0 1 K
12 le0neg1 K K 0 0 K
13 4 12 ax-mp K 0 0 K
14 2 nngt0i 0 < N
15 2 nnrei N
16 1 zrei M
17 5 15 16 lttri 0 < N N < M 0 < M
18 14 17 mpan N < M 0 < M
19 5 16 ltlei 0 < M 0 M
20 18 19 syl N < M 0 M
21 4 renegcli K
22 21 16 mulge0i 0 K 0 M 0 K M
23 20 22 sylan2 0 K N < M 0 K M
24 13 23 sylanb K 0 N < M 0 K M
25 24 expcom N < M K 0 0 K M
26 4 16 remulcli K M
27 le0neg1 K M K M 0 0 K M
28 26 27 ax-mp K M 0 0 K M
29 4 recni K
30 16 recni M
31 29 30 mulneg1i K M = K M
32 31 breq2i 0 K M 0 K M
33 28 32 bitr4i K M 0 0 K M
34 25 33 syl6ibr N < M K 0 K M 0
35 26 5 15 lelttri K M 0 0 < N K M < N
36 14 35 mpan2 K M 0 K M < N
37 34 36 syl6 N < M K 0 K M < N
38 lemulge12 M K 0 M 1 K M K M
39 16 4 38 mpanl12 0 M 1 K M K M
40 20 39 sylan N < M 1 K M K M
41 40 ex N < M 1 K M K M
42 15 16 26 ltletri N < M M K M N < K M
43 42 ex N < M M K M N < K M
44 41 43 syld N < M 1 K N < K M
45 37 44 orim12d N < M K 0 1 K K M < N N < K M
46 11 45 mpi N < M K M < N N < K M
47 26 15 lttri2i K M N K M < N N < K M
48 46 47 sylibr N < M K M N