Metamath Proof Explorer


Theorem dvdsmulc

Description: Multiplication by a constant maintains the divides relation. (Contributed by Paul Chapman, 21-Mar-2011)

Ref Expression
Assertion dvdsmulc M N K M N M K N K

Proof

Step Hyp Ref Expression
1 3simpc K M N M N
2 zmulcl M K M K
3 2 3adant2 M N K M K
4 zmulcl N K N K
5 4 3adant1 M N K N K
6 3 5 jca M N K M K N K
7 6 3comr K M N M K N K
8 simpr K M N x x
9 zcn x x
10 zcn M M
11 zcn K K
12 mulass x M K x M K = x M K
13 9 10 11 12 syl3an x M K x M K = x M K
14 13 3com13 K M x x M K = x M K
15 14 3expa K M x x M K = x M K
16 15 3adantl3 K M N x x M K = x M K
17 oveq1 x M = N x M K = N K
18 16 17 sylan9req K M N x x M = N x M K = N K
19 18 ex K M N x x M = N x M K = N K
20 1 7 8 19 dvds1lem K M N M N M K N K
21 20 3coml M N K M N M K N K