Metamath Proof Explorer


Theorem dvdsmulcr

Description: Cancellation law for the divides relation. (Contributed by Paul Chapman, 21-Mar-2011)

Ref Expression
Assertion dvdsmulcr M N K K 0 M K N K M N

Proof

Step Hyp Ref Expression
1 zmulcl M K M K
2 1 3adant2 M N K M K
3 zmulcl N K N K
4 3 3adant1 M N K N K
5 2 4 jca M N K M K N K
6 5 3adant3r M N K K 0 M K N K
7 3simpa M N K K 0 M N
8 simpr M N K K 0 x x
9 zcn x x
10 zcn M M
11 9 10 anim12i x M x M
12 zcn N N
13 zcn K K
14 13 anim1i K K 0 K K 0
15 mulass x M K x M K = x M K
16 15 3expa x M K x M K = x M K
17 16 adantrr x M K K 0 x M K = x M K
18 17 3adant2 x M N K K 0 x M K = x M K
19 18 eqeq1d x M N K K 0 x M K = N K x M K = N K
20 mulcl x M x M
21 mulcan2 x M N K K 0 x M K = N K x M = N
22 20 21 syl3an1 x M N K K 0 x M K = N K x M = N
23 19 22 bitr3d x M N K K 0 x M K = N K x M = N
24 11 12 14 23 syl3an x M N K K 0 x M K = N K x M = N
25 24 3expb x M N K K 0 x M K = N K x M = N
26 25 3impa x M N K K 0 x M K = N K x M = N
27 26 3coml M N K K 0 x x M K = N K x M = N
28 27 3expia M N K K 0 x x M K = N K x M = N
29 28 3impb M N K K 0 x x M K = N K x M = N
30 29 imp M N K K 0 x x M K = N K x M = N
31 30 biimpd M N K K 0 x x M K = N K x M = N
32 6 7 8 31 dvds1lem M N K K 0 M K N K M N
33 dvdsmulc M N K M N M K N K
34 33 3adant3r M N K K 0 M N M K N K
35 32 34 impbid M N K K 0 M K N K M N