Metamath Proof Explorer


Theorem dvdsn1add

Description: If K divides N but K does not divide M , then K does not divide ( M + N ) . (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Assertion dvdsn1add K M N ¬ K M K N ¬ K M + N

Proof

Step Hyp Ref Expression
1 simp1 K M N K
2 zaddcl M N M + N
3 2 3adant1 K M N M + N
4 simp3 K M N N
5 1 3 4 3jca K M N K M + N N
6 5 ad2antrr K M N K N K M + N K M + N N
7 pm3.22 K N K M + N K M + N K N
8 7 adantll K M N K N K M + N K M + N K N
9 dvds2sub K M + N N K M + N K N K M + N - N
10 6 8 9 sylc K M N K N K M + N K M + N - N
11 zcn M M
12 11 3ad2ant2 K M N M
13 12 ad2antrr K M N K N K M + N M
14 4 zcnd K M N N
15 14 ad2antrr K M N K N K M + N N
16 13 15 pncand K M N K N K M + N M + N - N = M
17 10 16 breqtrd K M N K N K M + N K M
18 17 adantlrl K M N ¬ K M K N K M + N K M
19 simplrl K M N ¬ K M K N K M + N ¬ K M
20 18 19 pm2.65da K M N ¬ K M K N ¬ K M + N
21 20 ex K M N ¬ K M K N ¬ K M + N