Metamath Proof Explorer


Theorem dvdsnprmd

Description: If a number is divisible by an integer greater than 1 and less than the number, the number is not prime. (Contributed by AV, 24-Jul-2021)

Ref Expression
Hypotheses dvdsnprmd.g φ 1 < A
dvdsnprmd.l φ A < N
dvdsnprmd.d φ A N
Assertion dvdsnprmd φ ¬ N

Proof

Step Hyp Ref Expression
1 dvdsnprmd.g φ 1 < A
2 dvdsnprmd.l φ A < N
3 dvdsnprmd.d φ A N
4 dvdszrcl A N A N
5 divides A N A N k k A = N
6 3 4 5 3syl φ A N k k A = N
7 2z 2
8 7 a1i φ k k A = N 2
9 simplr φ k k A = N k
10 2 adantr φ k A < N
11 10 adantr φ k k A = N A < N
12 breq2 k A = N A < k A A < N
13 12 adantl φ k k A = N A < k A A < N
14 11 13 mpbird φ k k A = N A < k A
15 zre A A
16 15 3ad2ant1 A 1 < A k A
17 zre k k
18 17 3ad2ant3 A 1 < A k k
19 0lt1 0 < 1
20 0red A 0
21 1red A 1
22 lttr 0 1 A 0 < 1 1 < A 0 < A
23 20 21 15 22 syl3anc A 0 < 1 1 < A 0 < A
24 19 23 mpani A 1 < A 0 < A
25 24 imp A 1 < A 0 < A
26 25 3adant3 A 1 < A k 0 < A
27 16 18 26 3jca A 1 < A k A k 0 < A
28 27 3exp A 1 < A k A k 0 < A
29 28 adantr A N 1 < A k A k 0 < A
30 3 4 29 3syl φ 1 < A k A k 0 < A
31 1 30 mpd φ k A k 0 < A
32 31 imp φ k A k 0 < A
33 32 adantr φ k k A = N A k 0 < A
34 ltmulgt12 A k 0 < A 1 < k A < k A
35 33 34 syl φ k k A = N 1 < k A < k A
36 14 35 mpbird φ k k A = N 1 < k
37 df-2 2 = 1 + 1
38 37 breq1i 2 k 1 + 1 k
39 1zzd k 1
40 zltp1le 1 k 1 < k 1 + 1 k
41 39 40 mpancom k 1 < k 1 + 1 k
42 41 bicomd k 1 + 1 k 1 < k
43 42 adantl φ k 1 + 1 k 1 < k
44 43 adantr φ k k A = N 1 + 1 k 1 < k
45 38 44 syl5bb φ k k A = N 2 k 1 < k
46 36 45 mpbird φ k k A = N 2 k
47 eluz2 k 2 2 k 2 k
48 8 9 46 47 syl3anbrc φ k k A = N k 2
49 7 a1i A 1 < A 2
50 simpl A 1 < A A
51 1zzd A 1
52 zltp1le 1 A 1 < A 1 + 1 A
53 51 52 mpancom A 1 < A 1 + 1 A
54 53 biimpa A 1 < A 1 + 1 A
55 37 breq1i 2 A 1 + 1 A
56 54 55 sylibr A 1 < A 2 A
57 49 50 56 3jca A 1 < A 2 A 2 A
58 57 ex A 1 < A 2 A 2 A
59 58 adantr A N 1 < A 2 A 2 A
60 3 4 59 3syl φ 1 < A 2 A 2 A
61 1 60 mpd φ 2 A 2 A
62 eluz2 A 2 2 A 2 A
63 61 62 sylibr φ A 2
64 63 adantr φ k A 2
65 64 adantr φ k k A = N A 2
66 nprm k 2 A 2 ¬ k A
67 48 65 66 syl2anc φ k k A = N ¬ k A
68 eleq1 k A = N k A N
69 68 notbid k A = N ¬ k A ¬ N
70 69 adantl φ k k A = N ¬ k A ¬ N
71 67 70 mpbid φ k k A = N ¬ N
72 71 rexlimdva2 φ k k A = N ¬ N
73 6 72 sylbid φ A N ¬ N
74 3 73 mpd φ ¬ N