Metamath Proof Explorer


Theorem dvdsppwf1o

Description: A bijection from the divisors of a prime power to the integers less than the prime count. (Contributed by Mario Carneiro, 5-May-2016)

Ref Expression
Hypothesis dvdsppwf1o.f F = n 0 A P n
Assertion dvdsppwf1o P A 0 F : 0 A 1-1 onto x | x P A

Proof

Step Hyp Ref Expression
1 dvdsppwf1o.f F = n 0 A P n
2 breq1 x = P n x P A P n P A
3 prmnn P P
4 3 adantr P A 0 P
5 elfznn0 n 0 A n 0
6 nnexpcl P n 0 P n
7 4 5 6 syl2an P A 0 n 0 A P n
8 prmz P P
9 8 ad2antrr P A 0 n 0 A P
10 5 adantl P A 0 n 0 A n 0
11 elfzuz3 n 0 A A n
12 11 adantl P A 0 n 0 A A n
13 dvdsexp P n 0 A n P n P A
14 9 10 12 13 syl3anc P A 0 n 0 A P n P A
15 2 7 14 elrabd P A 0 n 0 A P n x | x P A
16 simpl P A 0 P
17 elrabi m x | x P A m
18 pccl P m P pCnt m 0
19 16 17 18 syl2an P A 0 m x | x P A P pCnt m 0
20 16 adantr P A 0 m x | x P A P
21 17 adantl P A 0 m x | x P A m
22 21 nnzd P A 0 m x | x P A m
23 8 ad2antrr P A 0 m x | x P A P
24 simplr P A 0 m x | x P A A 0
25 zexpcl P A 0 P A
26 23 24 25 syl2anc P A 0 m x | x P A P A
27 breq1 x = m x P A m P A
28 27 elrab m x | x P A m m P A
29 28 simprbi m x | x P A m P A
30 29 adantl P A 0 m x | x P A m P A
31 pcdvdstr P m P A m P A P pCnt m P pCnt P A
32 20 22 26 30 31 syl13anc P A 0 m x | x P A P pCnt m P pCnt P A
33 pcidlem P A 0 P pCnt P A = A
34 33 adantr P A 0 m x | x P A P pCnt P A = A
35 32 34 breqtrd P A 0 m x | x P A P pCnt m A
36 fznn0 A 0 P pCnt m 0 A P pCnt m 0 P pCnt m A
37 24 36 syl P A 0 m x | x P A P pCnt m 0 A P pCnt m 0 P pCnt m A
38 19 35 37 mpbir2and P A 0 m x | x P A P pCnt m 0 A
39 oveq2 n = A P n = P A
40 39 breq2d n = A m P n m P A
41 40 rspcev A 0 m P A n 0 m P n
42 24 30 41 syl2anc P A 0 m x | x P A n 0 m P n
43 pcprmpw2 P m n 0 m P n m = P P pCnt m
44 16 17 43 syl2an P A 0 m x | x P A n 0 m P n m = P P pCnt m
45 42 44 mpbid P A 0 m x | x P A m = P P pCnt m
46 45 adantrl P A 0 n 0 A m x | x P A m = P P pCnt m
47 oveq2 n = P pCnt m P n = P P pCnt m
48 47 eqeq2d n = P pCnt m m = P n m = P P pCnt m
49 46 48 syl5ibrcom P A 0 n 0 A m x | x P A n = P pCnt m m = P n
50 elfzelz n 0 A n
51 pcid P n P pCnt P n = n
52 16 50 51 syl2an P A 0 n 0 A P pCnt P n = n
53 52 eqcomd P A 0 n 0 A n = P pCnt P n
54 53 adantrr P A 0 n 0 A m x | x P A n = P pCnt P n
55 oveq2 m = P n P pCnt m = P pCnt P n
56 55 eqeq2d m = P n n = P pCnt m n = P pCnt P n
57 54 56 syl5ibrcom P A 0 n 0 A m x | x P A m = P n n = P pCnt m
58 49 57 impbid P A 0 n 0 A m x | x P A n = P pCnt m m = P n
59 1 15 38 58 f1o2d P A 0 F : 0 A 1-1 onto x | x P A