Metamath Proof Explorer


Theorem dvdsprm

Description: An integer greater than or equal to 2 divides a prime number iff it is equal to it. (Contributed by Paul Chapman, 26-Oct-2012)

Ref Expression
Assertion dvdsprm N 2 P N P N = P

Proof

Step Hyp Ref Expression
1 breq1 z = N z P N P
2 eqeq1 z = N z = P N = P
3 1 2 imbi12d z = N z P z = P N P N = P
4 3 rspcv N 2 z 2 z P z = P N P N = P
5 isprm4 P P 2 z 2 z P z = P
6 5 simprbi P z 2 z P z = P
7 4 6 impel N 2 P N P N = P
8 eluzelz N 2 N
9 iddvds N N N
10 breq2 N = P N N N P
11 9 10 syl5ibcom N N = P N P
12 8 11 syl N 2 N = P N P
13 12 adantr N 2 P N = P N P
14 7 13 impbid N 2 P N P N = P