Metamath Proof Explorer


Theorem dvdsprmpweq

Description: If a positive integer divides a prime power, it is a prime power. (Contributed by AV, 25-Jul-2021)

Ref Expression
Assertion dvdsprmpweq P A N 0 A P N n 0 A = P n

Proof

Step Hyp Ref Expression
1 simp1 P A N 0 P
2 simp2 P A N 0 A
3 1 2 pccld P A N 0 P pCnt A 0
4 3 adantr P A N 0 A P N P pCnt A 0
5 oveq2 n = P pCnt A P n = P P pCnt A
6 5 eqeq2d n = P pCnt A A = P n A = P P pCnt A
7 6 adantl P A N 0 A P N n = P pCnt A A = P n A = P P pCnt A
8 simpl3 P A N 0 A P N N 0
9 oveq2 n = N P n = P N
10 9 breq2d n = N A P n A P N
11 10 adantl P A N 0 A P N n = N A P n A P N
12 simpr P A N 0 A P N A P N
13 8 11 12 rspcedvd P A N 0 A P N n 0 A P n
14 pcprmpw2 P A n 0 A P n A = P P pCnt A
15 14 3adant3 P A N 0 n 0 A P n A = P P pCnt A
16 15 adantr P A N 0 A P N n 0 A P n A = P P pCnt A
17 13 16 mpbid P A N 0 A P N A = P P pCnt A
18 4 7 17 rspcedvd P A N 0 A P N n 0 A = P n
19 18 ex P A N 0 A P N n 0 A = P n