Metamath Proof Explorer


Theorem dvdsprmpweqle

Description: If a positive integer divides a prime power, it is a prime power with a smaller exponent. (Contributed by AV, 25-Jul-2021)

Ref Expression
Assertion dvdsprmpweqle P A N 0 A P N n 0 n N A = P n

Proof

Step Hyp Ref Expression
1 dvdsprmpweq P A N 0 A P N n 0 A = P n
2 1 imp P A N 0 A P N n 0 A = P n
3 nn0re N 0 N
4 3 3ad2ant3 P A N 0 N
5 4 adantr P A N 0 A P N N
6 nn0re n 0 n
7 5 6 anim12ci P A N 0 A P N n 0 n N
8 7 adantr P A N 0 A P N n 0 A = P n n N
9 lelttric n N n N N < n
10 8 9 syl P A N 0 A P N n 0 A = P n n N N < n
11 breq1 A = P n A P N P n P N
12 11 adantl P A N 0 n 0 A = P n A P N P n P N
13 prmnn P P
14 13 nnnn0d P P 0
15 14 3ad2ant1 P A N 0 P 0
16 15 adantr P A N 0 n 0 P 0
17 simpr P A N 0 n 0 n 0
18 16 17 nn0expcld P A N 0 n 0 P n 0
19 18 nn0zd P A N 0 n 0 P n
20 13 nncnd P P
21 20 3ad2ant1 P A N 0 P
22 21 adantr P A N 0 n 0 P
23 13 nnne0d P P 0
24 23 3ad2ant1 P A N 0 P 0
25 24 adantr P A N 0 n 0 P 0
26 nn0z n 0 n
27 26 adantl P A N 0 n 0 n
28 22 25 27 expne0d P A N 0 n 0 P n 0
29 simp3 P A N 0 N 0
30 29 adantr P A N 0 n 0 N 0
31 16 30 nn0expcld P A N 0 n 0 P N 0
32 31 nn0zd P A N 0 n 0 P N
33 dvdsval2 P n P n 0 P N P n P N P N P n
34 19 28 32 33 syl3anc P A N 0 n 0 P n P N P N P n
35 20 23 jca P P P 0
36 35 3ad2ant1 P A N 0 P P 0
37 nn0z N 0 N
38 37 3ad2ant3 P A N 0 N
39 38 26 anim12i P A N 0 n 0 N n
40 expsub P P 0 N n P N n = P N P n
41 40 eqcomd P P 0 N n P N P n = P N n
42 36 39 41 syl2an2r P A N 0 n 0 P N P n = P N n
43 42 eleq1d P A N 0 n 0 P N P n P N n
44 22 adantr P A N 0 n 0 N < n P
45 nn0cn N 0 N
46 45 3ad2ant3 P A N 0 N
47 46 adantr P A N 0 n 0 N
48 nn0cn n 0 n
49 48 adantl P A N 0 n 0 n
50 47 49 subcld P A N 0 n 0 N n
51 50 adantr P A N 0 n 0 N < n N n
52 46 48 anim12i P A N 0 n 0 N n
53 52 adantr P A N 0 n 0 N < n N n
54 negsubdi2 N n N n = n N
55 53 54 syl P A N 0 n 0 N < n N n = n N
56 29 anim1ci P A N 0 n 0 n 0 N 0
57 ltsubnn0 n 0 N 0 N < n n N 0
58 56 57 syl P A N 0 n 0 N < n n N 0
59 58 imp P A N 0 n 0 N < n n N 0
60 55 59 eqeltrd P A N 0 n 0 N < n N n 0
61 expneg2 P N n N n 0 P N n = 1 P N n
62 44 51 60 61 syl3anc P A N 0 n 0 N < n P N n = 1 P N n
63 62 eleq1d P A N 0 n 0 N < n P N n 1 P N n
64 13 nnred P P
65 64 3ad2ant1 P A N 0 P
66 65 adantr P A N 0 n 0 P
67 66 adantr P A N 0 n 0 N < n P
68 67 59 reexpcld P A N 0 n 0 N < n P n N
69 znnsub N n N < n n N
70 39 69 syl P A N 0 n 0 N < n n N
71 70 biimpa P A N 0 n 0 N < n n N
72 prmgt1 P 1 < P
73 72 3ad2ant1 P A N 0 1 < P
74 73 adantr P A N 0 n 0 1 < P
75 74 adantr P A N 0 n 0 N < n 1 < P
76 expgt1 P n N 1 < P 1 < P n N
77 67 71 75 76 syl3anc P A N 0 n 0 N < n 1 < P n N
78 68 77 jca P A N 0 n 0 N < n P n N 1 < P n N
79 oveq2 N n = n N P N n = P n N
80 79 eleq1d N n = n N P N n P n N
81 79 breq2d N n = n N 1 < P N n 1 < P n N
82 80 81 anbi12d N n = n N P N n 1 < P N n P n N 1 < P n N
83 78 82 syl5ibrcom P A N 0 n 0 N < n N n = n N P N n 1 < P N n
84 55 83 mpd P A N 0 n 0 N < n P N n 1 < P N n
85 recnz P N n 1 < P N n ¬ 1 P N n
86 84 85 syl P A N 0 n 0 N < n ¬ 1 P N n
87 86 pm2.21d P A N 0 n 0 N < n 1 P N n n N
88 63 87 sylbid P A N 0 n 0 N < n P N n n N
89 88 ex P A N 0 n 0 N < n P N n n N
90 89 com23 P A N 0 n 0 P N n N < n n N
91 43 90 sylbid P A N 0 n 0 P N P n N < n n N
92 34 91 sylbid P A N 0 n 0 P n P N N < n n N
93 92 adantr P A N 0 n 0 A = P n P n P N N < n n N
94 12 93 sylbid P A N 0 n 0 A = P n A P N N < n n N
95 94 ex P A N 0 n 0 A = P n A P N N < n n N
96 95 com23 P A N 0 n 0 A P N A = P n N < n n N
97 96 ex P A N 0 n 0 A P N A = P n N < n n N
98 97 com23 P A N 0 A P N n 0 A = P n N < n n N
99 98 imp41 P A N 0 A P N n 0 A = P n N < n n N
100 99 com12 N < n P A N 0 A P N n 0 A = P n n N
101 100 jao1i n N N < n P A N 0 A P N n 0 A = P n n N
102 10 101 mpcom P A N 0 A P N n 0 A = P n n N
103 simpr P A N 0 A P N n 0 A = P n A = P n
104 102 103 jca P A N 0 A P N n 0 A = P n n N A = P n
105 104 ex P A N 0 A P N n 0 A = P n n N A = P n
106 105 reximdva P A N 0 A P N n 0 A = P n n 0 n N A = P n
107 2 106 mpd P A N 0 A P N n 0 n N A = P n
108 107 ex P A N 0 A P N n 0 n N A = P n