Description: If an integer greater than 1 divides a prime power, it is a (proper) prime power. (Contributed by AV, 13-Aug-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | dvdsprmpweqnn | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluz2nn | |
|
2 | dvdsprmpweq | |
|
3 | 1 2 | syl3an2 | |
4 | 3 | imp | |
5 | df-n0 | |
|
6 | 5 | rexeqi | |
7 | rexun | |
|
8 | 6 7 | bitri | |
9 | 0z | |
|
10 | oveq2 | |
|
11 | 10 | eqeq2d | |
12 | 11 | rexsng | |
13 | 9 12 | ax-mp | |
14 | prmnn | |
|
15 | 14 | nncnd | |
16 | 15 | exp0d | |
17 | 16 | 3ad2ant1 | |
18 | 17 | eqeq2d | |
19 | eluz2b3 | |
|
20 | eqneqall | |
|
21 | 20 | com12 | |
22 | 19 21 | simplbiim | |
23 | 22 | 3ad2ant2 | |
24 | 18 23 | sylbid | |
25 | 24 | com12 | |
26 | 25 | impd | |
27 | 13 26 | sylbi | |
28 | 27 | jao1i | |
29 | 8 28 | sylbi | |
30 | 4 29 | mpcom | |
31 | 30 | ex | |