Metamath Proof Explorer


Theorem dvdsprmpweqnn

Description: If an integer greater than 1 divides a prime power, it is a (proper) prime power. (Contributed by AV, 13-Aug-2021)

Ref Expression
Assertion dvdsprmpweqnn P A 2 N 0 A P N n A = P n

Proof

Step Hyp Ref Expression
1 eluz2nn A 2 A
2 dvdsprmpweq P A N 0 A P N n 0 A = P n
3 1 2 syl3an2 P A 2 N 0 A P N n 0 A = P n
4 3 imp P A 2 N 0 A P N n 0 A = P n
5 df-n0 0 = 0
6 5 rexeqi n 0 A = P n n 0 A = P n
7 rexun n 0 A = P n n A = P n n 0 A = P n
8 6 7 bitri n 0 A = P n n A = P n n 0 A = P n
9 0z 0
10 oveq2 n = 0 P n = P 0
11 10 eqeq2d n = 0 A = P n A = P 0
12 11 rexsng 0 n 0 A = P n A = P 0
13 9 12 ax-mp n 0 A = P n A = P 0
14 prmnn P P
15 14 nncnd P P
16 15 exp0d P P 0 = 1
17 16 3ad2ant1 P A 2 N 0 P 0 = 1
18 17 eqeq2d P A 2 N 0 A = P 0 A = 1
19 eluz2b3 A 2 A A 1
20 eqneqall A = 1 A 1 A P N n A = P n
21 20 com12 A 1 A = 1 A P N n A = P n
22 19 21 simplbiim A 2 A = 1 A P N n A = P n
23 22 3ad2ant2 P A 2 N 0 A = 1 A P N n A = P n
24 18 23 sylbid P A 2 N 0 A = P 0 A P N n A = P n
25 24 com12 A = P 0 P A 2 N 0 A P N n A = P n
26 25 impd A = P 0 P A 2 N 0 A P N n A = P n
27 13 26 sylbi n 0 A = P n P A 2 N 0 A P N n A = P n
28 27 jao1i n A = P n n 0 A = P n P A 2 N 0 A P N n A = P n
29 8 28 sylbi n 0 A = P n P A 2 N 0 A P N n A = P n
30 4 29 mpcom P A 2 N 0 A P N n A = P n
31 30 ex P A 2 N 0 A P N n A = P n