Metamath Proof Explorer


Theorem dvdsprmpweqnn

Description: If an integer greater than 1 divides a prime power, it is a (proper) prime power. (Contributed by AV, 13-Aug-2021)

Ref Expression
Assertion dvdsprmpweqnn PA2N0APNnA=Pn

Proof

Step Hyp Ref Expression
1 eluz2nn A2A
2 dvdsprmpweq PAN0APNn0A=Pn
3 1 2 syl3an2 PA2N0APNn0A=Pn
4 3 imp PA2N0APNn0A=Pn
5 df-n0 0=0
6 5 rexeqi n0A=Pnn0A=Pn
7 rexun n0A=PnnA=Pnn0A=Pn
8 6 7 bitri n0A=PnnA=Pnn0A=Pn
9 0z 0
10 oveq2 n=0Pn=P0
11 10 eqeq2d n=0A=PnA=P0
12 11 rexsng 0n0A=PnA=P0
13 9 12 ax-mp n0A=PnA=P0
14 prmnn PP
15 14 nncnd PP
16 15 exp0d PP0=1
17 16 3ad2ant1 PA2N0P0=1
18 17 eqeq2d PA2N0A=P0A=1
19 eluz2b3 A2AA1
20 eqneqall A=1A1APNnA=Pn
21 20 com12 A1A=1APNnA=Pn
22 19 21 simplbiim A2A=1APNnA=Pn
23 22 3ad2ant2 PA2N0A=1APNnA=Pn
24 18 23 sylbid PA2N0A=P0APNnA=Pn
25 24 com12 A=P0PA2N0APNnA=Pn
26 25 impd A=P0PA2N0APNnA=Pn
27 13 26 sylbi n0A=PnPA2N0APNnA=Pn
28 27 jao1i nA=Pnn0A=PnPA2N0APNnA=Pn
29 8 28 sylbi n0A=PnPA2N0APNnA=Pn
30 4 29 mpcom PA2N0APNnA=Pn
31 30 ex PA2N0APNnA=Pn