Step |
Hyp |
Ref |
Expression |
1 |
|
dvdsq1p.p |
|
2 |
|
dvdsq1p.d |
|
3 |
|
dvdsq1p.b |
|
4 |
|
dvdsq1p.c |
|
5 |
|
dvdsq1p.t |
|
6 |
|
dvdsq1p.q |
|
7 |
1 3 4
|
uc1pcl |
|
8 |
7
|
3ad2ant3 |
|
9 |
3 2 5
|
dvdsr2 |
|
10 |
8 9
|
syl |
|
11 |
|
eqcom |
|
12 |
|
simprr |
|
13 |
|
simprl |
|
14 |
|
simpl1 |
|
15 |
1
|
ply1ring |
|
16 |
14 15
|
syl |
|
17 |
|
ringgrp |
|
18 |
16 17
|
syl |
|
19 |
|
simpl2 |
|
20 |
|
simpr |
|
21 |
8
|
adantr |
|
22 |
3 5
|
ringcl |
|
23 |
16 20 21 22
|
syl3anc |
|
24 |
|
eqid |
|
25 |
|
eqid |
|
26 |
3 24 25
|
grpsubeq0 |
|
27 |
18 19 23 26
|
syl3anc |
|
28 |
27
|
biimprd |
|
29 |
28
|
impr |
|
30 |
29
|
fveq2d |
|
31 |
|
simpl1 |
|
32 |
|
eqid |
|
33 |
32 1 24
|
deg1z |
|
34 |
31 33
|
syl |
|
35 |
30 34
|
eqtrd |
|
36 |
32 4
|
uc1pdeg |
|
37 |
36
|
3adant2 |
|
38 |
37
|
nn0red |
|
39 |
38
|
adantr |
|
40 |
39
|
mnfltd |
|
41 |
35 40
|
eqbrtrd |
|
42 |
6 1 3 32 25 5 4
|
q1peqb |
|
43 |
42
|
adantr |
|
44 |
13 41 43
|
mpbi2and |
|
45 |
44
|
oveq1d |
|
46 |
12 45
|
eqtr4d |
|
47 |
46
|
expr |
|
48 |
11 47
|
syl5bi |
|
49 |
48
|
rexlimdva |
|
50 |
10 49
|
sylbid |
|
51 |
6 1 3 4
|
q1pcl |
|
52 |
3 2 5
|
dvdsrmul |
|
53 |
8 51 52
|
syl2anc |
|
54 |
|
breq2 |
|
55 |
53 54
|
syl5ibrcom |
|
56 |
50 55
|
impbid |
|