Metamath Proof Explorer


Theorem dvdsq1p

Description: Divisibility in a polynomial ring is witnessed by the quotient. (Contributed by Stefan O'Rear, 28-Mar-2015)

Ref Expression
Hypotheses dvdsq1p.p P = Poly 1 R
dvdsq1p.d ˙ = r P
dvdsq1p.b B = Base P
dvdsq1p.c C = Unic 1p R
dvdsq1p.t · ˙ = P
dvdsq1p.q Q = quot 1p R
Assertion dvdsq1p R Ring F B G C G ˙ F F = F Q G · ˙ G

Proof

Step Hyp Ref Expression
1 dvdsq1p.p P = Poly 1 R
2 dvdsq1p.d ˙ = r P
3 dvdsq1p.b B = Base P
4 dvdsq1p.c C = Unic 1p R
5 dvdsq1p.t · ˙ = P
6 dvdsq1p.q Q = quot 1p R
7 1 3 4 uc1pcl G C G B
8 7 3ad2ant3 R Ring F B G C G B
9 3 2 5 dvdsr2 G B G ˙ F q B q · ˙ G = F
10 8 9 syl R Ring F B G C G ˙ F q B q · ˙ G = F
11 eqcom q · ˙ G = F F = q · ˙ G
12 simprr R Ring F B G C q B F = q · ˙ G F = q · ˙ G
13 simprl R Ring F B G C q B F = q · ˙ G q B
14 simpl1 R Ring F B G C q B R Ring
15 1 ply1ring R Ring P Ring
16 14 15 syl R Ring F B G C q B P Ring
17 ringgrp P Ring P Grp
18 16 17 syl R Ring F B G C q B P Grp
19 simpl2 R Ring F B G C q B F B
20 simpr R Ring F B G C q B q B
21 8 adantr R Ring F B G C q B G B
22 3 5 ringcl P Ring q B G B q · ˙ G B
23 16 20 21 22 syl3anc R Ring F B G C q B q · ˙ G B
24 eqid 0 P = 0 P
25 eqid - P = - P
26 3 24 25 grpsubeq0 P Grp F B q · ˙ G B F - P q · ˙ G = 0 P F = q · ˙ G
27 18 19 23 26 syl3anc R Ring F B G C q B F - P q · ˙ G = 0 P F = q · ˙ G
28 27 biimprd R Ring F B G C q B F = q · ˙ G F - P q · ˙ G = 0 P
29 28 impr R Ring F B G C q B F = q · ˙ G F - P q · ˙ G = 0 P
30 29 fveq2d R Ring F B G C q B F = q · ˙ G deg 1 R F - P q · ˙ G = deg 1 R 0 P
31 simpl1 R Ring F B G C q B F = q · ˙ G R Ring
32 eqid deg 1 R = deg 1 R
33 32 1 24 deg1z R Ring deg 1 R 0 P = −∞
34 31 33 syl R Ring F B G C q B F = q · ˙ G deg 1 R 0 P = −∞
35 30 34 eqtrd R Ring F B G C q B F = q · ˙ G deg 1 R F - P q · ˙ G = −∞
36 32 4 uc1pdeg R Ring G C deg 1 R G 0
37 36 3adant2 R Ring F B G C deg 1 R G 0
38 37 nn0red R Ring F B G C deg 1 R G
39 38 adantr R Ring F B G C q B F = q · ˙ G deg 1 R G
40 39 mnfltd R Ring F B G C q B F = q · ˙ G −∞ < deg 1 R G
41 35 40 eqbrtrd R Ring F B G C q B F = q · ˙ G deg 1 R F - P q · ˙ G < deg 1 R G
42 6 1 3 32 25 5 4 q1peqb R Ring F B G C q B deg 1 R F - P q · ˙ G < deg 1 R G F Q G = q
43 42 adantr R Ring F B G C q B F = q · ˙ G q B deg 1 R F - P q · ˙ G < deg 1 R G F Q G = q
44 13 41 43 mpbi2and R Ring F B G C q B F = q · ˙ G F Q G = q
45 44 oveq1d R Ring F B G C q B F = q · ˙ G F Q G · ˙ G = q · ˙ G
46 12 45 eqtr4d R Ring F B G C q B F = q · ˙ G F = F Q G · ˙ G
47 46 expr R Ring F B G C q B F = q · ˙ G F = F Q G · ˙ G
48 11 47 syl5bi R Ring F B G C q B q · ˙ G = F F = F Q G · ˙ G
49 48 rexlimdva R Ring F B G C q B q · ˙ G = F F = F Q G · ˙ G
50 10 49 sylbid R Ring F B G C G ˙ F F = F Q G · ˙ G
51 6 1 3 4 q1pcl R Ring F B G C F Q G B
52 3 2 5 dvdsrmul G B F Q G B G ˙ F Q G · ˙ G
53 8 51 52 syl2anc R Ring F B G C G ˙ F Q G · ˙ G
54 breq2 F = F Q G · ˙ G G ˙ F G ˙ F Q G · ˙ G
55 53 54 syl5ibrcom R Ring F B G C F = F Q G · ˙ G G ˙ F
56 50 55 impbid R Ring F B G C G ˙ F F = F Q G · ˙ G