Metamath Proof Explorer


Theorem dvdsr01

Description: In a ring, zero is divisible by all elements. ("Zero divisor" as a term has a somewhat different meaning, see df-rlreg .) (Contributed by Stefan O'Rear, 29-Mar-2015)

Ref Expression
Hypotheses dvdsr0.b B = Base R
dvdsr0.d ˙ = r R
dvdsr0.z 0 ˙ = 0 R
Assertion dvdsr01 R Ring X B X ˙ 0 ˙

Proof

Step Hyp Ref Expression
1 dvdsr0.b B = Base R
2 dvdsr0.d ˙ = r R
3 dvdsr0.z 0 ˙ = 0 R
4 1 3 ring0cl R Ring 0 ˙ B
5 eqid R = R
6 1 5 3 ringlz R Ring X B 0 ˙ R X = 0 ˙
7 oveq1 x = 0 ˙ x R X = 0 ˙ R X
8 7 eqeq1d x = 0 ˙ x R X = 0 ˙ 0 ˙ R X = 0 ˙
9 8 rspcev 0 ˙ B 0 ˙ R X = 0 ˙ x B x R X = 0 ˙
10 4 6 9 syl2an2r R Ring X B x B x R X = 0 ˙
11 1 2 5 dvdsr2 X B X ˙ 0 ˙ x B x R X = 0 ˙
12 11 adantl R Ring X B X ˙ 0 ˙ x B x R X = 0 ˙
13 10 12 mpbird R Ring X B X ˙ 0 ˙