Metamath Proof Explorer


Theorem dvdsr1p

Description: Divisibility in a polynomial ring in terms of the remainder. (Contributed by Stefan O'Rear, 28-Mar-2015)

Ref Expression
Hypotheses dvdsq1p.p P = Poly 1 R
dvdsq1p.d ˙ = r P
dvdsq1p.b B = Base P
dvdsq1p.c C = Unic 1p R
dvdsr1p.z 0 ˙ = 0 P
dvdsr1p.e E = rem 1p R
Assertion dvdsr1p R Ring F B G C G ˙ F F E G = 0 ˙

Proof

Step Hyp Ref Expression
1 dvdsq1p.p P = Poly 1 R
2 dvdsq1p.d ˙ = r P
3 dvdsq1p.b B = Base P
4 dvdsq1p.c C = Unic 1p R
5 dvdsr1p.z 0 ˙ = 0 P
6 dvdsr1p.e E = rem 1p R
7 1 ply1ring R Ring P Ring
8 7 3ad2ant1 R Ring F B G C P Ring
9 ringgrp P Ring P Grp
10 8 9 syl R Ring F B G C P Grp
11 simp2 R Ring F B G C F B
12 eqid quot 1p R = quot 1p R
13 12 1 3 4 q1pcl R Ring F B G C F quot 1p R G B
14 1 3 4 uc1pcl G C G B
15 14 3ad2ant3 R Ring F B G C G B
16 eqid P = P
17 3 16 ringcl P Ring F quot 1p R G B G B F quot 1p R G P G B
18 8 13 15 17 syl3anc R Ring F B G C F quot 1p R G P G B
19 eqid - P = - P
20 3 5 19 grpsubeq0 P Grp F B F quot 1p R G P G B F - P F quot 1p R G P G = 0 ˙ F = F quot 1p R G P G
21 10 11 18 20 syl3anc R Ring F B G C F - P F quot 1p R G P G = 0 ˙ F = F quot 1p R G P G
22 6 1 3 12 16 19 r1pval F B G B F E G = F - P F quot 1p R G P G
23 11 15 22 syl2anc R Ring F B G C F E G = F - P F quot 1p R G P G
24 23 eqeq1d R Ring F B G C F E G = 0 ˙ F - P F quot 1p R G P G = 0 ˙
25 1 2 3 4 16 12 dvdsq1p R Ring F B G C G ˙ F F = F quot 1p R G P G
26 21 24 25 3bitr4rd R Ring F B G C G ˙ F F E G = 0 ˙