Database
BASIC ALGEBRAIC STRUCTURES
Rings
Divisibility
dvdsr2
Next ⟩
dvdsrmul
Metamath Proof Explorer
Ascii
Unicode
Theorem
dvdsr2
Description:
Value of the divides relation.
(Contributed by
Mario Carneiro
, 1-Dec-2014)
Ref
Expression
Hypotheses
dvdsr.1
⊢
B
=
Base
R
dvdsr.2
⊢
∥
˙
=
∥
r
⁡
R
dvdsr.3
⊢
·
˙
=
⋅
R
Assertion
dvdsr2
⊢
X
∈
B
→
X
∥
˙
Y
↔
∃
z
∈
B
z
·
˙
X
=
Y
Proof
Step
Hyp
Ref
Expression
1
dvdsr.1
⊢
B
=
Base
R
2
dvdsr.2
⊢
∥
˙
=
∥
r
⁡
R
3
dvdsr.3
⊢
·
˙
=
⋅
R
4
1
2
3
dvdsr
⊢
X
∥
˙
Y
↔
X
∈
B
∧
∃
z
∈
B
z
·
˙
X
=
Y
5
4
baib
⊢
X
∈
B
→
X
∥
˙
Y
↔
∃
z
∈
B
z
·
˙
X
=
Y