Metamath Proof Explorer


Theorem dvdsr2

Description: Value of the divides relation. (Contributed by Mario Carneiro, 1-Dec-2014)

Ref Expression
Hypotheses dvdsr.1 B = Base R
dvdsr.2 ˙ = r R
dvdsr.3 · ˙ = R
Assertion dvdsr2 X B X ˙ Y z B z · ˙ X = Y

Proof

Step Hyp Ref Expression
1 dvdsr.1 B = Base R
2 dvdsr.2 ˙ = r R
3 dvdsr.3 · ˙ = R
4 1 2 3 dvdsr X ˙ Y X B z B z · ˙ X = Y
5 4 baib X B X ˙ Y z B z · ˙ X = Y