Metamath Proof Explorer


Theorem dvdsrcl

Description: Closure of a dividing element. (Contributed by Mario Carneiro, 5-Dec-2014)

Ref Expression
Hypotheses dvdsr.1 B = Base R
dvdsr.2 ˙ = r R
Assertion dvdsrcl X ˙ Y X B

Proof

Step Hyp Ref Expression
1 dvdsr.1 B = Base R
2 dvdsr.2 ˙ = r R
3 eqid R = R
4 1 2 3 dvdsr X ˙ Y X B x B x R X = Y
5 4 simplbi X ˙ Y X B