Metamath Proof Explorer


Theorem dvdsrcl2

Description: Closure of a dividing element. (Contributed by Mario Carneiro, 5-Dec-2014)

Ref Expression
Hypotheses dvdsr.1 B = Base R
dvdsr.2 ˙ = r R
Assertion dvdsrcl2 R Ring X ˙ Y Y B

Proof

Step Hyp Ref Expression
1 dvdsr.1 B = Base R
2 dvdsr.2 ˙ = r R
3 eqid R = R
4 1 2 3 dvdsr X ˙ Y X B x B x R X = Y
5 1 3 ringcl R Ring x B X B x R X B
6 5 3expa R Ring x B X B x R X B
7 6 an32s R Ring X B x B x R X B
8 eleq1 x R X = Y x R X B Y B
9 7 8 syl5ibcom R Ring X B x B x R X = Y Y B
10 9 rexlimdva R Ring X B x B x R X = Y Y B
11 10 impr R Ring X B x B x R X = Y Y B
12 4 11 sylan2b R Ring X ˙ Y Y B