Database
BASIC ALGEBRAIC STRUCTURES
Rings
Divisibility
dvdsrcl2
Next ⟩
dvdsrid
Metamath Proof Explorer
Ascii
Unicode
Theorem
dvdsrcl2
Description:
Closure of a dividing element.
(Contributed by
Mario Carneiro
, 5-Dec-2014)
Ref
Expression
Hypotheses
dvdsr.1
⊢
B
=
Base
R
dvdsr.2
⊢
∥
˙
=
∥
r
⁡
R
Assertion
dvdsrcl2
⊢
R
∈
Ring
∧
X
∥
˙
Y
→
Y
∈
B
Proof
Step
Hyp
Ref
Expression
1
dvdsr.1
⊢
B
=
Base
R
2
dvdsr.2
⊢
∥
˙
=
∥
r
⁡
R
3
eqid
⊢
⋅
R
=
⋅
R
4
1
2
3
dvdsr
⊢
X
∥
˙
Y
↔
X
∈
B
∧
∃
x
∈
B
x
⋅
R
X
=
Y
5
1
3
ringcl
⊢
R
∈
Ring
∧
x
∈
B
∧
X
∈
B
→
x
⋅
R
X
∈
B
6
5
3expa
⊢
R
∈
Ring
∧
x
∈
B
∧
X
∈
B
→
x
⋅
R
X
∈
B
7
6
an32s
⊢
R
∈
Ring
∧
X
∈
B
∧
x
∈
B
→
x
⋅
R
X
∈
B
8
eleq1
⊢
x
⋅
R
X
=
Y
→
x
⋅
R
X
∈
B
↔
Y
∈
B
9
7
8
syl5ibcom
⊢
R
∈
Ring
∧
X
∈
B
∧
x
∈
B
→
x
⋅
R
X
=
Y
→
Y
∈
B
10
9
rexlimdva
⊢
R
∈
Ring
∧
X
∈
B
→
∃
x
∈
B
x
⋅
R
X
=
Y
→
Y
∈
B
11
10
impr
⊢
R
∈
Ring
∧
X
∈
B
∧
∃
x
∈
B
x
⋅
R
X
=
Y
→
Y
∈
B
12
4
11
sylan2b
⊢
R
∈
Ring
∧
X
∥
˙
Y
→
Y
∈
B