Metamath Proof Explorer


Theorem dvdsrid

Description: An element in a (unital) ring divides itself. (Contributed by Mario Carneiro, 1-Dec-2014) (Revised by Mario Carneiro, 30-Apr-2015)

Ref Expression
Hypotheses dvdsr.1 B = Base R
dvdsr.2 ˙ = r R
Assertion dvdsrid R Ring X B X ˙ X

Proof

Step Hyp Ref Expression
1 dvdsr.1 B = Base R
2 dvdsr.2 ˙ = r R
3 id X B X B
4 eqid 1 R = 1 R
5 1 4 ringidcl R Ring 1 R B
6 eqid R = R
7 1 2 6 dvdsrmul X B 1 R B X ˙ 1 R R X
8 3 5 7 syl2anr R Ring X B X ˙ 1 R R X
9 1 6 4 ringlidm R Ring X B 1 R R X = X
10 8 9 breqtrd R Ring X B X ˙ X