Database
BASIC ALGEBRAIC STRUCTURES
Rings
Divisibility
dvdsrneg
Next ⟩
dvdsr01
Metamath Proof Explorer
Ascii
Unicode
Theorem
dvdsrneg
Description:
An element divides its negative.
(Contributed by
Mario Carneiro
, 1-Dec-2014)
Ref
Expression
Hypotheses
dvdsr.1
⊢
B
=
Base
R
dvdsr.2
⊢
∥
˙
=
∥
r
⁡
R
dvdsrneg.5
⊢
N
=
inv
g
⁡
R
Assertion
dvdsrneg
⊢
R
∈
Ring
∧
X
∈
B
→
X
∥
˙
N
⁡
X
Proof
Step
Hyp
Ref
Expression
1
dvdsr.1
⊢
B
=
Base
R
2
dvdsr.2
⊢
∥
˙
=
∥
r
⁡
R
3
dvdsrneg.5
⊢
N
=
inv
g
⁡
R
4
id
⊢
X
∈
B
→
X
∈
B
5
ringgrp
⊢
R
∈
Ring
→
R
∈
Grp
6
eqid
⊢
1
R
=
1
R
7
1
6
ringidcl
⊢
R
∈
Ring
→
1
R
∈
B
8
1
3
grpinvcl
⊢
R
∈
Grp
∧
1
R
∈
B
→
N
⁡
1
R
∈
B
9
5
7
8
syl2anc
⊢
R
∈
Ring
→
N
⁡
1
R
∈
B
10
eqid
⊢
⋅
R
=
⋅
R
11
1
2
10
dvdsrmul
⊢
X
∈
B
∧
N
⁡
1
R
∈
B
→
X
∥
˙
N
⁡
1
R
⋅
R
X
12
4
9
11
syl2anr
⊢
R
∈
Ring
∧
X
∈
B
→
X
∥
˙
N
⁡
1
R
⋅
R
X
13
simpl
⊢
R
∈
Ring
∧
X
∈
B
→
R
∈
Ring
14
simpr
⊢
R
∈
Ring
∧
X
∈
B
→
X
∈
B
15
1
10
6
3
13
14
ringnegl
⊢
R
∈
Ring
∧
X
∈
B
→
N
⁡
1
R
⋅
R
X
=
N
⁡
X
16
12
15
breqtrd
⊢
R
∈
Ring
∧
X
∈
B
→
X
∥
˙
N
⁡
X