Metamath Proof Explorer


Theorem dvdsrneg

Description: An element divides its negative. (Contributed by Mario Carneiro, 1-Dec-2014)

Ref Expression
Hypotheses dvdsr.1 B = Base R
dvdsr.2 ˙ = r R
dvdsrneg.5 N = inv g R
Assertion dvdsrneg R Ring X B X ˙ N X

Proof

Step Hyp Ref Expression
1 dvdsr.1 B = Base R
2 dvdsr.2 ˙ = r R
3 dvdsrneg.5 N = inv g R
4 id X B X B
5 ringgrp R Ring R Grp
6 eqid 1 R = 1 R
7 1 6 ringidcl R Ring 1 R B
8 1 3 grpinvcl R Grp 1 R B N 1 R B
9 5 7 8 syl2anc R Ring N 1 R B
10 eqid R = R
11 1 2 10 dvdsrmul X B N 1 R B X ˙ N 1 R R X
12 4 9 11 syl2anr R Ring X B X ˙ N 1 R R X
13 simpl R Ring X B R Ring
14 simpr R Ring X B X B
15 1 10 6 3 13 14 ringnegl R Ring X B N 1 R R X = N X
16 12 15 breqtrd R Ring X B X ˙ N X