Step |
Hyp |
Ref |
Expression |
1 |
|
dvdsrspss.b |
|
2 |
|
dvdsrspss.k |
|
3 |
|
dvdsrspss.d |
|
4 |
|
dvdsrspss.x |
|
5 |
|
dvdsrspss.y |
|
6 |
|
dvdsruassoi.1 |
|
7 |
|
dvdsruassoi.2 |
|
8 |
|
dvdsruasso.r |
|
9 |
1 3 7
|
dvdsr |
|
10 |
4
|
biantrurd |
|
11 |
9 10
|
bitr4id |
|
12 |
1 3 7
|
dvdsr |
|
13 |
5
|
biantrurd |
|
14 |
12 13
|
bitr4id |
|
15 |
11 14
|
anbi12d |
|
16 |
8
|
idomringd |
|
17 |
|
eqid |
|
18 |
6 17
|
1unit |
|
19 |
16 18
|
syl |
|
20 |
19
|
ad5antr |
|
21 |
|
oveq1 |
|
22 |
21
|
eqeq1d |
|
23 |
22
|
adantl |
|
24 |
16
|
ad5antr |
|
25 |
4
|
ad5antr |
|
26 |
1 7 17 24 25
|
ringlidmd |
|
27 |
|
simpr |
|
28 |
27
|
oveq2d |
|
29 |
|
simplr |
|
30 |
|
simpllr |
|
31 |
|
eqid |
|
32 |
1 7 31
|
ringrz |
|
33 |
24 30 32
|
syl2anc |
|
34 |
28 29 33
|
3eqtr3rd |
|
35 |
26 27 34
|
3eqtrd |
|
36 |
20 23 35
|
rspcedvd |
|
37 |
|
isidom |
|
38 |
8 37
|
sylib |
|
39 |
38
|
simpld |
|
40 |
39
|
ad5antr |
|
41 |
|
simp-5r |
|
42 |
|
simpllr |
|
43 |
4
|
ad5antr |
|
44 |
|
simpr |
|
45 |
|
eldifsn |
|
46 |
43 44 45
|
sylanbrc |
|
47 |
16
|
ad5antr |
|
48 |
1 7 47 41 42
|
ringcld |
|
49 |
1 17
|
ringidcl |
|
50 |
47 49
|
syl |
|
51 |
8
|
ad5antr |
|
52 |
|
simplr |
|
53 |
52
|
oveq2d |
|
54 |
|
simp-4r |
|
55 |
53 54
|
eqtrd |
|
56 |
1 7 47 41 42 43
|
ringassd |
|
57 |
1 7 17 47 43
|
ringlidmd |
|
58 |
55 56 57
|
3eqtr4d |
|
59 |
1 31 7 46 48 50 51 58
|
idomrcan |
|
60 |
47 18
|
syl |
|
61 |
59 60
|
eqeltrd |
|
62 |
6 7 1
|
unitmulclb |
|
63 |
62
|
simplbda |
|
64 |
40 41 42 61 63
|
syl31anc |
|
65 |
|
oveq1 |
|
66 |
65
|
eqeq1d |
|
67 |
66
|
adantl |
|
68 |
64 67 52
|
rspcedvd |
|
69 |
36 68
|
pm2.61dane |
|
70 |
69
|
r19.29an |
|
71 |
70
|
an32s |
|
72 |
71
|
ex |
|
73 |
72
|
an32s |
|
74 |
73
|
imp |
|
75 |
74
|
r19.29an |
|
76 |
75
|
anasss |
|
77 |
15 76
|
sylbida |
|
78 |
4
|
ad2antrr |
|
79 |
5
|
ad2antrr |
|
80 |
16
|
ad2antrr |
|
81 |
|
simplr |
|
82 |
|
simpr |
|
83 |
1 2 3 78 79 6 7 80 81 82
|
dvdsruassoi |
|
84 |
83
|
r19.29an |
|
85 |
77 84
|
impbida |
|