Description: Ring divisibility in the ring of integers corresponds to ordinary divisibility in ZZ . (Contributed by Stefan O'Rear, 3-Jan-2015) (Revised by AV, 9-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvdsrzring | |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | |
|
| 2 | 1 | anim1i | |
| 3 | simpl | |
|
| 4 | zmulcl | |
|
| 5 | 4 | ancoms | |
| 6 | eleq1 | |
|
| 7 | 5 6 | syl5ibcom | |
| 8 | 7 | rexlimdva | |
| 9 | 8 | imp | |
| 10 | simpr | |
|
| 11 | 3 9 10 | jca31 | |
| 12 | 2 11 | impbii | |
| 13 | 12 | opabbii | |
| 14 | df-dvds | |
|
| 15 | zringbas | |
|
| 16 | eqid | |
|
| 17 | zringmulr | |
|
| 18 | 15 16 17 | dvdsrval | |
| 19 | 13 14 18 | 3eqtr4i | |