Metamath Proof Explorer


Theorem dvdsrzring

Description: Ring divisibility in the ring of integers corresponds to ordinary divisibility in ZZ . (Contributed by Stefan O'Rear, 3-Jan-2015) (Revised by AV, 9-Jun-2019)

Ref Expression
Assertion dvdsrzring = r ring

Proof

Step Hyp Ref Expression
1 simpl x y x
2 1 anim1i x y z z x = y x z z x = y
3 simpl x z z x = y x
4 zmulcl z x z x
5 4 ancoms x z z x
6 eleq1 z x = y z x y
7 5 6 syl5ibcom x z z x = y y
8 7 rexlimdva x z z x = y y
9 8 imp x z z x = y y
10 simpr x z z x = y z z x = y
11 3 9 10 jca31 x z z x = y x y z z x = y
12 2 11 impbii x y z z x = y x z z x = y
13 12 opabbii x y | x y z z x = y = x y | x z z x = y
14 df-dvds = x y | x y z z x = y
15 zringbas = Base ring
16 eqid r ring = r ring
17 zringmulr × = ring
18 15 16 17 dvdsrval r ring = x y | x z z x = y
19 13 14 18 3eqtr4i = r ring