Metamath Proof Explorer


Theorem dvdssqf

Description: A divisor of a squarefree number is squarefree. (Contributed by Mario Carneiro, 1-Jul-2015)

Ref Expression
Assertion dvdssqf A B B A μ A 0 μ B 0

Proof

Step Hyp Ref Expression
1 simpl3 A B B A p B A
2 prmz p p
3 2 adantl A B B A p p
4 zsqcl p p 2
5 3 4 syl A B B A p p 2
6 simpl2 A B B A p B
7 6 nnzd A B B A p B
8 simpl1 A B B A p A
9 8 nnzd A B B A p A
10 dvdstr p 2 B A p 2 B B A p 2 A
11 5 7 9 10 syl3anc A B B A p p 2 B B A p 2 A
12 1 11 mpan2d A B B A p p 2 B p 2 A
13 12 reximdva A B B A p p 2 B p p 2 A
14 isnsqf B μ B = 0 p p 2 B
15 14 3ad2ant2 A B B A μ B = 0 p p 2 B
16 isnsqf A μ A = 0 p p 2 A
17 16 3ad2ant1 A B B A μ A = 0 p p 2 A
18 13 15 17 3imtr4d A B B A μ B = 0 μ A = 0
19 18 necon3d A B B A μ A 0 μ B 0