Metamath Proof Explorer


Theorem dvdssqim

Description: Unidirectional form of dvdssq . (Contributed by Scott Fenton, 19-Apr-2014)

Ref Expression
Assertion dvdssqim M N M N M 2 N 2

Proof

Step Hyp Ref Expression
1 divides M N M N k k M = N
2 zsqcl k k 2
3 zsqcl M M 2
4 dvdsmul2 k 2 M 2 M 2 k 2 M 2
5 2 3 4 syl2anr M k M 2 k 2 M 2
6 zcn k k
7 zcn M M
8 sqmul k M k M 2 = k 2 M 2
9 6 7 8 syl2anr M k k M 2 = k 2 M 2
10 5 9 breqtrrd M k M 2 k M 2
11 oveq1 k M = N k M 2 = N 2
12 11 breq2d k M = N M 2 k M 2 M 2 N 2
13 10 12 syl5ibcom M k k M = N M 2 N 2
14 13 rexlimdva M k k M = N M 2 N 2
15 14 adantr M N k k M = N M 2 N 2
16 1 15 sylbid M N M N M 2 N 2