Database
ELEMENTARY NUMBER THEORY
Elementary properties of divisibility
Bézout's identity
dvdssqim
Next ⟩
dvdsmulgcd
Metamath Proof Explorer
Ascii
Unicode
Theorem
dvdssqim
Description:
Unidirectional form of
dvdssq
.
(Contributed by
Scott Fenton
, 19-Apr-2014)
Ref
Expression
Assertion
dvdssqim
⊢
M
∈
ℤ
∧
N
∈
ℤ
→
M
∥
N
→
M
2
∥
N
2
Proof
Step
Hyp
Ref
Expression
1
divides
⊢
M
∈
ℤ
∧
N
∈
ℤ
→
M
∥
N
↔
∃
k
∈
ℤ
k
⋅
M
=
N
2
zsqcl
⊢
k
∈
ℤ
→
k
2
∈
ℤ
3
zsqcl
⊢
M
∈
ℤ
→
M
2
∈
ℤ
4
dvdsmul2
⊢
k
2
∈
ℤ
∧
M
2
∈
ℤ
→
M
2
∥
k
2
⁢
M
2
5
2
3
4
syl2anr
⊢
M
∈
ℤ
∧
k
∈
ℤ
→
M
2
∥
k
2
⁢
M
2
6
zcn
⊢
k
∈
ℤ
→
k
∈
ℂ
7
zcn
⊢
M
∈
ℤ
→
M
∈
ℂ
8
sqmul
⊢
k
∈
ℂ
∧
M
∈
ℂ
→
k
⋅
M
2
=
k
2
⁢
M
2
9
6
7
8
syl2anr
⊢
M
∈
ℤ
∧
k
∈
ℤ
→
k
⋅
M
2
=
k
2
⁢
M
2
10
5
9
breqtrrd
⊢
M
∈
ℤ
∧
k
∈
ℤ
→
M
2
∥
k
⋅
M
2
11
oveq1
⊢
k
⋅
M
=
N
→
k
⋅
M
2
=
N
2
12
11
breq2d
⊢
k
⋅
M
=
N
→
M
2
∥
k
⋅
M
2
↔
M
2
∥
N
2
13
10
12
syl5ibcom
⊢
M
∈
ℤ
∧
k
∈
ℤ
→
k
⋅
M
=
N
→
M
2
∥
N
2
14
13
rexlimdva
⊢
M
∈
ℤ
→
∃
k
∈
ℤ
k
⋅
M
=
N
→
M
2
∥
N
2
15
14
adantr
⊢
M
∈
ℤ
∧
N
∈
ℤ
→
∃
k
∈
ℤ
k
⋅
M
=
N
→
M
2
∥
N
2
16
1
15
sylbid
⊢
M
∈
ℤ
∧
N
∈
ℤ
→
M
∥
N
→
M
2
∥
N
2