Metamath Proof Explorer


Theorem dvdsssfz1

Description: The set of divisors of a number is a subset of a finite set. (Contributed by Mario Carneiro, 22-Sep-2014)

Ref Expression
Assertion dvdsssfz1 A p | p A 1 A

Proof

Step Hyp Ref Expression
1 nnz p p
2 id A A
3 dvdsle p A p A p A
4 1 2 3 syl2anr A p p A p A
5 ibar p p A p p A
6 5 adantl A p p A p p A
7 nnz A A
8 7 adantr A p A
9 fznn A p 1 A p p A
10 8 9 syl A p p 1 A p p A
11 6 10 bitr4d A p p A p 1 A
12 4 11 sylibd A p p A p 1 A
13 12 ralrimiva A p p A p 1 A
14 rabss p | p A 1 A p p A p 1 A
15 13 14 sylibr A p | p A 1 A