Metamath Proof Explorer


Theorem dvdssubr

Description: An integer divides another iff it divides their difference. (Contributed by Paul Chapman, 31-Mar-2011)

Ref Expression
Assertion dvdssubr M N M N M N M

Proof

Step Hyp Ref Expression
1 zsubcl N M N M
2 1 ancoms M N N M
3 dvdsadd M N M M N M M M + N - M
4 2 3 syldan M N M N M M M + N - M
5 zcn M M
6 zcn N N
7 pncan3 M N M + N - M = N
8 5 6 7 syl2an M N M + N - M = N
9 8 breq2d M N M M + N - M M N
10 4 9 bitr2d M N M N M N M