Database
BASIC ALGEBRAIC STRUCTURES
Rings
Divisibility
dvdsunit
Next ⟩
unitmulcl
Metamath Proof Explorer
Ascii
Unicode
Theorem
dvdsunit
Description:
A divisor of a unit is a unit.
(Contributed by
Mario Carneiro
, 18-Apr-2016)
Ref
Expression
Hypotheses
dvdsunit.1
⊢
U
=
Unit
⁡
R
dvdsunit.3
⊢
∥
˙
=
∥
r
⁡
R
Assertion
dvdsunit
⊢
R
∈
CRing
∧
Y
∥
˙
X
∧
X
∈
U
→
Y
∈
U
Proof
Step
Hyp
Ref
Expression
1
dvdsunit.1
⊢
U
=
Unit
⁡
R
2
dvdsunit.3
⊢
∥
˙
=
∥
r
⁡
R
3
crngring
⊢
R
∈
CRing
→
R
∈
Ring
4
eqid
⊢
Base
R
=
Base
R
5
4
2
dvdsrtr
⊢
R
∈
Ring
∧
Y
∥
˙
X
∧
X
∥
˙
1
R
→
Y
∥
˙
1
R
6
5
3expia
⊢
R
∈
Ring
∧
Y
∥
˙
X
→
X
∥
˙
1
R
→
Y
∥
˙
1
R
7
3
6
sylan
⊢
R
∈
CRing
∧
Y
∥
˙
X
→
X
∥
˙
1
R
→
Y
∥
˙
1
R
8
eqid
⊢
1
R
=
1
R
9
1
8
2
crngunit
⊢
R
∈
CRing
→
X
∈
U
↔
X
∥
˙
1
R
10
9
adantr
⊢
R
∈
CRing
∧
Y
∥
˙
X
→
X
∈
U
↔
X
∥
˙
1
R
11
1
8
2
crngunit
⊢
R
∈
CRing
→
Y
∈
U
↔
Y
∥
˙
1
R
12
11
adantr
⊢
R
∈
CRing
∧
Y
∥
˙
X
→
Y
∈
U
↔
Y
∥
˙
1
R
13
7
10
12
3imtr4d
⊢
R
∈
CRing
∧
Y
∥
˙
X
→
X
∈
U
→
Y
∈
U
14
13
3impia
⊢
R
∈
CRing
∧
Y
∥
˙
X
∧
X
∈
U
→
Y
∈
U