Metamath Proof Explorer


Theorem dvdsunit

Description: A divisor of a unit is a unit. (Contributed by Mario Carneiro, 18-Apr-2016)

Ref Expression
Hypotheses dvdsunit.1 U = Unit R
dvdsunit.3 ˙ = r R
Assertion dvdsunit R CRing Y ˙ X X U Y U

Proof

Step Hyp Ref Expression
1 dvdsunit.1 U = Unit R
2 dvdsunit.3 ˙ = r R
3 crngring R CRing R Ring
4 eqid Base R = Base R
5 4 2 dvdsrtr R Ring Y ˙ X X ˙ 1 R Y ˙ 1 R
6 5 3expia R Ring Y ˙ X X ˙ 1 R Y ˙ 1 R
7 3 6 sylan R CRing Y ˙ X X ˙ 1 R Y ˙ 1 R
8 eqid 1 R = 1 R
9 1 8 2 crngunit R CRing X U X ˙ 1 R
10 9 adantr R CRing Y ˙ X X U X ˙ 1 R
11 1 8 2 crngunit R CRing Y U Y ˙ 1 R
12 11 adantr R CRing Y ˙ X Y U Y ˙ 1 R
13 7 10 12 3imtr4d R CRing Y ˙ X X U Y U
14 13 3impia R CRing Y ˙ X X U Y U