| Step | Hyp | Ref | Expression | 
						
							| 1 |  | divides |  | 
						
							| 2 | 1 | 3adant2 |  | 
						
							| 3 |  | zcn |  | 
						
							| 4 | 3 | 3ad2ant3 |  | 
						
							| 5 | 4 | adantr |  | 
						
							| 6 |  | zcn |  | 
						
							| 7 | 6 | adantl |  | 
						
							| 8 |  | zcn |  | 
						
							| 9 | 8 | 3ad2ant1 |  | 
						
							| 10 | 9 | adantr |  | 
						
							| 11 |  | simpl2 |  | 
						
							| 12 | 5 7 10 11 | divmul3d |  | 
						
							| 13 |  | eqcom |  | 
						
							| 14 | 12 13 | bitrdi |  | 
						
							| 15 | 14 | biimprd |  | 
						
							| 16 | 15 | impr |  | 
						
							| 17 |  | simprl |  | 
						
							| 18 | 16 17 | eqeltrd |  | 
						
							| 19 | 18 | rexlimdvaa |  | 
						
							| 20 |  | simpr |  | 
						
							| 21 |  | simp2 |  | 
						
							| 22 | 4 9 21 | divcan1d |  | 
						
							| 23 | 22 | adantr |  | 
						
							| 24 |  | oveq1 |  | 
						
							| 25 | 24 | eqeq1d |  | 
						
							| 26 | 25 | rspcev |  | 
						
							| 27 | 20 23 26 | syl2anc |  | 
						
							| 28 | 27 | ex |  | 
						
							| 29 | 19 28 | impbid |  | 
						
							| 30 | 2 29 | bitrd |  |