Step |
Hyp |
Ref |
Expression |
1 |
|
divides |
|
2 |
1
|
3adant2 |
|
3 |
|
zcn |
|
4 |
3
|
3ad2ant3 |
|
5 |
4
|
adantr |
|
6 |
|
zcn |
|
7 |
6
|
adantl |
|
8 |
|
zcn |
|
9 |
8
|
3ad2ant1 |
|
10 |
9
|
adantr |
|
11 |
|
simpl2 |
|
12 |
5 7 10 11
|
divmul3d |
|
13 |
|
eqcom |
|
14 |
12 13
|
bitrdi |
|
15 |
14
|
biimprd |
|
16 |
15
|
impr |
|
17 |
|
simprl |
|
18 |
16 17
|
eqeltrd |
|
19 |
18
|
rexlimdvaa |
|
20 |
|
simpr |
|
21 |
|
simp2 |
|
22 |
4 9 21
|
divcan1d |
|
23 |
22
|
adantr |
|
24 |
|
oveq1 |
|
25 |
24
|
eqeq1d |
|
26 |
25
|
rspcev |
|
27 |
20 23 26
|
syl2anc |
|
28 |
27
|
ex |
|
29 |
19 28
|
impbid |
|
30 |
2 29
|
bitrd |
|