Metamath Proof Explorer


Theorem dvdszrcl

Description: Reverse closure for the divisibility relation. (Contributed by Stefan O'Rear, 5-Sep-2015)

Ref Expression
Assertion dvdszrcl X Y X Y

Proof

Step Hyp Ref Expression
1 df-dvds = x y | x y z z x = y
2 opabssxp x y | x y z z x = y ×
3 1 2 eqsstri ×
4 3 brel X Y X Y