Metamath Proof Explorer


Theorem dveeq1-o

Description: Quantifier introduction when one pair of variables is distinct. Version of dveeq1 using ax-c11 . (Contributed by NM, 2-Jan-2002) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion dveeq1-o ¬ x x = y y = z x y = z

Proof

Step Hyp Ref Expression
1 ax-5 w = z x w = z
2 ax-5 y = z w y = z
3 equequ1 w = y w = z y = z
4 1 2 3 dvelimf-o ¬ x x = y y = z x y = z