Metamath Proof Explorer


Theorem dveeq2-o

Description: Quantifier introduction when one pair of variables is distinct. Version of dveeq2 using ax-c15 . (Contributed by NM, 2-Jan-2002) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion dveeq2-o ¬ x x = y z = y x z = y

Proof

Step Hyp Ref Expression
1 ax-5 z = w x z = w
2 ax-5 z = y w z = y
3 equequ2 w = y z = w z = y
4 1 2 3 dvelimf-o ¬ x x = y z = y x z = y