Metamath Proof Explorer


Theorem dveeq2ALT

Description: Alternate proof of dveeq2 , shorter but requiring ax-11 . (Contributed by NM, 2-Jan-2002) (Revised by NM, 20-Jul-2015) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Assertion dveeq2ALT ¬ x x = y z = y x z = y

Proof

Step Hyp Ref Expression
1 equequ2 w = y z = w z = y
2 1 dvelimv ¬ x x = y z = y x z = y