Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Class form not-free predicate
dvelimc
Metamath Proof Explorer
Description: Version of dvelim for classes. Usage of this theorem is discouraged
because it depends on ax-13 . (Contributed by Mario Carneiro , 8-Oct-2016) (New usage is discouraged.)
Ref
Expression
Hypotheses
dvelimc.1
⊢ Ⅎ _ x A
dvelimc.2
⊢ Ⅎ _ z B
dvelimc.3
⊢ z = y → A = B
Assertion
dvelimc
⊢ ¬ ∀ x x = y → Ⅎ _ x B
Proof
Step
Hyp
Ref
Expression
1
dvelimc.1
⊢ Ⅎ _ x A
2
dvelimc.2
⊢ Ⅎ _ z B
3
dvelimc.3
⊢ z = y → A = B
4
nftru
⊢ Ⅎ x ⊤
5
nftru
⊢ Ⅎ z ⊤
6
1
a1i
⊢ ⊤ → Ⅎ _ x A
7
2
a1i
⊢ ⊤ → Ⅎ _ z B
8
3
a1i
⊢ ⊤ → z = y → A = B
9
4 5 6 7 8
dvelimdc
⊢ ⊤ → ¬ ∀ x x = y → Ⅎ _ x B
10
9
mptru
⊢ ¬ ∀ x x = y → Ⅎ _ x B