Metamath Proof Explorer


Theorem dvelimc

Description: Version of dvelim for classes. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by Mario Carneiro, 8-Oct-2016) (New usage is discouraged.)

Ref Expression
Hypotheses dvelimc.1 _ x A
dvelimc.2 _ z B
dvelimc.3 z = y A = B
Assertion dvelimc ¬ x x = y _ x B

Proof

Step Hyp Ref Expression
1 dvelimc.1 _ x A
2 dvelimc.2 _ z B
3 dvelimc.3 z = y A = B
4 nftru x
5 nftru z
6 1 a1i _ x A
7 2 a1i _ z B
8 3 a1i z = y A = B
9 4 5 6 7 8 dvelimdc ¬ x x = y _ x B
10 9 mptru ¬ x x = y _ x B