Metamath Proof Explorer


Theorem dvelimdc

Description: Deduction form of dvelimc . Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by Mario Carneiro, 8-Oct-2016) (New usage is discouraged.)

Ref Expression
Hypotheses dvelimdc.1 x φ
dvelimdc.2 z φ
dvelimdc.3 φ _ x A
dvelimdc.4 φ _ z B
dvelimdc.5 φ z = y A = B
Assertion dvelimdc φ ¬ x x = y _ x B

Proof

Step Hyp Ref Expression
1 dvelimdc.1 x φ
2 dvelimdc.2 z φ
3 dvelimdc.3 φ _ x A
4 dvelimdc.4 φ _ z B
5 dvelimdc.5 φ z = y A = B
6 nfv w φ ¬ x x = y
7 3 nfcrd φ x w A
8 4 nfcrd φ z w B
9 eleq2 A = B w A w B
10 5 9 syl6 φ z = y w A w B
11 1 2 7 8 10 dvelimdf φ ¬ x x = y x w B
12 11 imp φ ¬ x x = y x w B
13 6 12 nfcd φ ¬ x x = y _ x B
14 13 ex φ ¬ x x = y _ x B