Metamath Proof Explorer


Theorem dvelimdf

Description: Deduction form of dvelimf . Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 7-Apr-2004) (Revised by Mario Carneiro, 6-Oct-2016) (Proof shortened by Wolf Lammen, 11-May-2018) (New usage is discouraged.)

Ref Expression
Hypotheses dvelimdf.1 x φ
dvelimdf.2 z φ
dvelimdf.3 φ x ψ
dvelimdf.4 φ z χ
dvelimdf.5 φ z = y ψ χ
Assertion dvelimdf φ ¬ x x = y x χ

Proof

Step Hyp Ref Expression
1 dvelimdf.1 x φ
2 dvelimdf.2 z φ
3 dvelimdf.3 φ x ψ
4 dvelimdf.4 φ z χ
5 dvelimdf.5 φ z = y ψ χ
6 1 3 nfim1 x φ ψ
7 2 4 nfim1 z φ χ
8 5 com12 z = y φ ψ χ
9 8 pm5.74d z = y φ ψ φ χ
10 6 7 9 dvelimf ¬ x x = y x φ χ
11 pm5.5 φ φ χ χ
12 1 11 nfbidf φ x φ χ x χ
13 10 12 syl5ib φ ¬ x x = y x χ