Metamath Proof Explorer


Theorem dvelimf-o

Description: Proof of dvelimh that uses ax-c11 but not ax-c15 , ax-c11n , or ax-12 . Version of dvelimh using ax-c11 instead of axc11 . (Contributed by NM, 12-Nov-2002) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses dvelimf-o.1 φ x φ
dvelimf-o.2 ψ z ψ
dvelimf-o.3 z = y φ ψ
Assertion dvelimf-o ¬ x x = y ψ x ψ

Proof

Step Hyp Ref Expression
1 dvelimf-o.1 φ x φ
2 dvelimf-o.2 ψ z ψ
3 dvelimf-o.3 z = y φ ψ
4 hba1-o z z = y φ z z z = y φ
5 ax-c11 z z = x z z z = y φ x z z = y φ
6 5 aecoms-o x x = z z z z = y φ x z z = y φ
7 4 6 syl5 x x = z z z = y φ x z z = y φ
8 7 a1d x x = z ¬ x x = y z z = y φ x z z = y φ
9 hbnae-o ¬ x x = z z ¬ x x = z
10 hbnae-o ¬ x x = y z ¬ x x = y
11 9 10 hban ¬ x x = z ¬ x x = y z ¬ x x = z ¬ x x = y
12 hbnae-o ¬ x x = z x ¬ x x = z
13 hbnae-o ¬ x x = y x ¬ x x = y
14 12 13 hban ¬ x x = z ¬ x x = y x ¬ x x = z ¬ x x = y
15 ax-c9 ¬ x x = z ¬ x x = y z = y x z = y
16 15 imp ¬ x x = z ¬ x x = y z = y x z = y
17 1 a1i ¬ x x = z ¬ x x = y φ x φ
18 14 16 17 hbimd ¬ x x = z ¬ x x = y z = y φ x z = y φ
19 11 18 hbald ¬ x x = z ¬ x x = y z z = y φ x z z = y φ
20 19 ex ¬ x x = z ¬ x x = y z z = y φ x z z = y φ
21 8 20 pm2.61i ¬ x x = y z z = y φ x z z = y φ
22 2 3 equsalh z z = y φ ψ
23 22 albii x z z = y φ x ψ
24 21 22 23 3imtr3g ¬ x x = y ψ x ψ