Metamath Proof Explorer


Theorem dvelimh

Description: Version of dvelim without any variable restrictions. Usage of this theorem is discouraged because it depends on ax-13 . Check out dvelimhw for a version requiring fewer axioms. (Contributed by NM, 1-Oct-2002) (Proof shortened by Wolf Lammen, 11-May-2018) (New usage is discouraged.)

Ref Expression
Hypotheses dvelimh.1 φ x φ
dvelimh.2 ψ z ψ
dvelimh.3 z = y φ ψ
Assertion dvelimh ¬ x x = y ψ x ψ

Proof

Step Hyp Ref Expression
1 dvelimh.1 φ x φ
2 dvelimh.2 ψ z ψ
3 dvelimh.3 z = y φ ψ
4 1 nf5i x φ
5 2 nf5i z ψ
6 4 5 3 dvelimf ¬ x x = y x ψ
7 6 nf5rd ¬ x x = y ψ x ψ