Metamath Proof Explorer


Theorem dvelimnf

Description: Version of dvelim using "not free" notation. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by Mario Carneiro, 9-Oct-2016) (New usage is discouraged.)

Ref Expression
Hypotheses dvelimnf.1 x φ
dvelimnf.2 z = y φ ψ
Assertion dvelimnf ¬ x x = y x ψ

Proof

Step Hyp Ref Expression
1 dvelimnf.1 x φ
2 dvelimnf.2 z = y φ ψ
3 nfv z ψ
4 1 3 2 dvelimf ¬ x x = y x ψ