Step |
Hyp |
Ref |
Expression |
1 |
|
dveq0.a |
|
2 |
|
dveq0.b |
|
3 |
|
dveq0.c |
|
4 |
|
dveq0.d |
|
5 |
|
cncff |
|
6 |
3 5
|
syl |
|
7 |
6
|
ffnd |
|
8 |
|
fvex |
|
9 |
|
fnconstg |
|
10 |
8 9
|
mp1i |
|
11 |
8
|
fvconst2 |
|
12 |
11
|
adantl |
|
13 |
6
|
adantr |
|
14 |
1
|
adantr |
|
15 |
14
|
rexrd |
|
16 |
2
|
adantr |
|
17 |
16
|
rexrd |
|
18 |
|
elicc2 |
|
19 |
1 2 18
|
syl2anc |
|
20 |
19
|
biimpa |
|
21 |
20
|
simp1d |
|
22 |
20
|
simp2d |
|
23 |
20
|
simp3d |
|
24 |
14 21 16 22 23
|
letrd |
|
25 |
|
lbicc2 |
|
26 |
15 17 24 25
|
syl3anc |
|
27 |
13 26
|
ffvelrnd |
|
28 |
6
|
ffvelrnda |
|
29 |
27 28
|
subcld |
|
30 |
|
simpr |
|
31 |
26 30
|
jca |
|
32 |
4
|
dmeqd |
|
33 |
|
c0ex |
|
34 |
33
|
snnz |
|
35 |
|
dmxp |
|
36 |
34 35
|
ax-mp |
|
37 |
32 36
|
eqtrdi |
|
38 |
|
0red |
|
39 |
4
|
fveq1d |
|
40 |
33
|
fvconst2 |
|
41 |
39 40
|
sylan9eq |
|
42 |
41
|
abs00bd |
|
43 |
|
0le0 |
|
44 |
42 43
|
eqbrtrdi |
|
45 |
1 2 3 37 38 44
|
dvlip |
|
46 |
31 45
|
syldan |
|
47 |
14
|
recnd |
|
48 |
21
|
recnd |
|
49 |
47 48
|
subcld |
|
50 |
49
|
abscld |
|
51 |
50
|
recnd |
|
52 |
51
|
mul02d |
|
53 |
46 52
|
breqtrd |
|
54 |
29
|
absge0d |
|
55 |
29
|
abscld |
|
56 |
|
0re |
|
57 |
|
letri3 |
|
58 |
55 56 57
|
sylancl |
|
59 |
53 54 58
|
mpbir2and |
|
60 |
29 59
|
abs00d |
|
61 |
27 28 60
|
subeq0d |
|
62 |
12 61
|
eqtr2d |
|
63 |
7 10 62
|
eqfnfvd |
|