Metamath Proof Explorer


Theorem dvexp

Description: Derivative of a power function. (Contributed by Mario Carneiro, 9-Aug-2014) (Revised by Mario Carneiro, 10-Feb-2015)

Ref Expression
Assertion dvexp N dx x N d x = x N x N 1

Proof

Step Hyp Ref Expression
1 oveq2 n = 1 x n = x 1
2 1 mpteq2dv n = 1 x x n = x x 1
3 2 oveq2d n = 1 dx x n d x = dx x 1 d x
4 id n = 1 n = 1
5 oveq1 n = 1 n 1 = 1 1
6 5 oveq2d n = 1 x n 1 = x 1 1
7 4 6 oveq12d n = 1 n x n 1 = 1 x 1 1
8 7 mpteq2dv n = 1 x n x n 1 = x 1 x 1 1
9 3 8 eqeq12d n = 1 dx x n d x = x n x n 1 dx x 1 d x = x 1 x 1 1
10 oveq2 n = k x n = x k
11 10 mpteq2dv n = k x x n = x x k
12 11 oveq2d n = k dx x n d x = dx x k d x
13 id n = k n = k
14 oveq1 n = k n 1 = k 1
15 14 oveq2d n = k x n 1 = x k 1
16 13 15 oveq12d n = k n x n 1 = k x k 1
17 16 mpteq2dv n = k x n x n 1 = x k x k 1
18 12 17 eqeq12d n = k dx x n d x = x n x n 1 dx x k d x = x k x k 1
19 oveq2 n = k + 1 x n = x k + 1
20 19 mpteq2dv n = k + 1 x x n = x x k + 1
21 20 oveq2d n = k + 1 dx x n d x = dx x k + 1 d x
22 id n = k + 1 n = k + 1
23 oveq1 n = k + 1 n 1 = k + 1 - 1
24 23 oveq2d n = k + 1 x n 1 = x k + 1 - 1
25 22 24 oveq12d n = k + 1 n x n 1 = k + 1 x k + 1 - 1
26 25 mpteq2dv n = k + 1 x n x n 1 = x k + 1 x k + 1 - 1
27 21 26 eqeq12d n = k + 1 dx x n d x = x n x n 1 dx x k + 1 d x = x k + 1 x k + 1 - 1
28 oveq2 n = N x n = x N
29 28 mpteq2dv n = N x x n = x x N
30 29 oveq2d n = N dx x n d x = dx x N d x
31 id n = N n = N
32 oveq1 n = N n 1 = N 1
33 32 oveq2d n = N x n 1 = x N 1
34 31 33 oveq12d n = N n x n 1 = N x N 1
35 34 mpteq2dv n = N x n x n 1 = x N x N 1
36 30 35 eqeq12d n = N dx x n d x = x n x n 1 dx x N d x = x N x N 1
37 exp1 x x 1 = x
38 37 mpteq2ia x x 1 = x x
39 mptresid I = x x
40 38 39 eqtr4i x x 1 = I
41 40 oveq2i dx x 1 d x = D I
42 1m1e0 1 1 = 0
43 42 oveq2i x 1 1 = x 0
44 exp0 x x 0 = 1
45 43 44 syl5eq x x 1 1 = 1
46 45 oveq2d x 1 x 1 1 = 1 1
47 1t1e1 1 1 = 1
48 46 47 eqtrdi x 1 x 1 1 = 1
49 48 mpteq2ia x 1 x 1 1 = x 1
50 fconstmpt × 1 = x 1
51 49 50 eqtr4i x 1 x 1 1 = × 1
52 dvid D I = × 1
53 51 52 eqtr4i x 1 x 1 1 = D I
54 41 53 eqtr4i dx x 1 d x = x 1 x 1 1
55 nncn k k
56 55 adantr k x k
57 ax-1cn 1
58 pncan k 1 k + 1 - 1 = k
59 56 57 58 sylancl k x k + 1 - 1 = k
60 59 oveq2d k x x k + 1 - 1 = x k
61 60 oveq2d k x k + 1 x k + 1 - 1 = k + 1 x k
62 57 a1i k x 1
63 id x x
64 nnnn0 k k 0
65 expcl x k 0 x k
66 63 64 65 syl2anr k x x k
67 56 62 66 adddird k x k + 1 x k = k x k + 1 x k
68 66 mulid2d k x 1 x k = x k
69 68 oveq2d k x k x k + 1 x k = k x k + x k
70 61 67 69 3eqtrd k x k + 1 x k + 1 - 1 = k x k + x k
71 70 mpteq2dva k x k + 1 x k + 1 - 1 = x k x k + x k
72 cnex V
73 72 a1i k V
74 56 66 mulcld k x k x k
75 nnm1nn0 k k 1 0
76 expcl x k 1 0 x k 1
77 63 75 76 syl2anr k x x k 1
78 56 77 mulcld k x k x k 1
79 simpr k x x
80 eqidd k x k x k 1 = x k x k 1
81 39 a1i k I = x x
82 73 78 79 80 81 offval2 k x k x k 1 × f I = x k x k 1 x
83 56 77 79 mulassd k x k x k 1 x = k x k 1 x
84 expm1t x k x k = x k 1 x
85 84 ancoms k x x k = x k 1 x
86 85 oveq2d k x k x k = k x k 1 x
87 83 86 eqtr4d k x k x k 1 x = k x k
88 87 mpteq2dva k x k x k 1 x = x k x k
89 82 88 eqtrd k x k x k 1 × f I = x k x k
90 52 50 eqtri D I = x 1
91 90 a1i k D I = x 1
92 eqidd k x x k = x x k
93 73 62 66 91 92 offval2 k I × f x x k = x 1 x k
94 68 mpteq2dva k x 1 x k = x x k
95 93 94 eqtrd k I × f x x k = x x k
96 73 74 66 89 95 offval2 k x k x k 1 × f I + f I × f x x k = x k x k + x k
97 71 96 eqtr4d k x k + 1 x k + 1 - 1 = x k x k 1 × f I + f I × f x x k
98 oveq1 dx x k d x = x k x k 1 dx x k d x × f I = x k x k 1 × f I
99 98 oveq1d dx x k d x = x k x k 1 dx x k d x × f I + f I × f x x k = x k x k 1 × f I + f I × f x x k
100 99 eqcomd dx x k d x = x k x k 1 x k x k 1 × f I + f I × f x x k = dx x k d x × f I + f I × f x x k
101 97 100 sylan9eq k dx x k d x = x k x k 1 x k + 1 x k + 1 - 1 = dx x k d x × f I + f I × f x x k
102 cnelprrecn
103 102 a1i k dx x k d x = x k x k 1
104 66 fmpttd k x x k :
105 104 adantr k dx x k d x = x k x k 1 x x k :
106 f1oi I : 1-1 onto
107 f1of I : 1-1 onto I :
108 106 107 mp1i k dx x k d x = x k x k 1 I :
109 simpr k dx x k d x = x k x k 1 dx x k d x = x k x k 1
110 109 dmeqd k dx x k d x = x k x k 1 dom dx x k d x = dom x k x k 1
111 78 fmpttd k x k x k 1 :
112 111 adantr k dx x k d x = x k x k 1 x k x k 1 :
113 112 fdmd k dx x k d x = x k x k 1 dom x k x k 1 =
114 110 113 eqtrd k dx x k d x = x k x k 1 dom dx x k d x =
115 1ex 1 V
116 115 fconst × 1 : 1
117 52 feq1i I : 1 × 1 : 1
118 116 117 mpbir I : 1
119 118 fdmi dom I =
120 119 a1i k dx x k d x = x k x k 1 dom I =
121 103 105 108 114 120 dvmulf k dx x k d x = x k x k 1 D x x k × f I = dx x k d x × f I + f I × f x x k
122 73 66 79 92 81 offval2 k x x k × f I = x x k x
123 expp1 x k 0 x k + 1 = x k x
124 63 64 123 syl2anr k x x k + 1 = x k x
125 124 mpteq2dva k x x k + 1 = x x k x
126 122 125 eqtr4d k x x k × f I = x x k + 1
127 126 oveq2d k D x x k × f I = dx x k + 1 d x
128 127 adantr k dx x k d x = x k x k 1 D x x k × f I = dx x k + 1 d x
129 101 121 128 3eqtr2rd k dx x k d x = x k x k 1 dx x k + 1 d x = x k + 1 x k + 1 - 1
130 129 ex k dx x k d x = x k x k 1 dx x k + 1 d x = x k + 1 x k + 1 - 1
131 9 18 27 36 54 130 nnind N dx x N d x = x N x N 1