Metamath Proof Explorer


Theorem dvexp2

Description: Derivative of an exponential, possibly zero power. (Contributed by Stefan O'Rear, 13-Nov-2014) (Revised by Mario Carneiro, 10-Feb-2015)

Ref Expression
Assertion dvexp2 N 0 dx x N d x = x if N = 0 0 N x N 1

Proof

Step Hyp Ref Expression
1 elnn0 N 0 N N = 0
2 dvexp N dx x N d x = x N x N 1
3 nnne0 N N 0
4 3 neneqd N ¬ N = 0
5 4 iffalsed N if N = 0 0 N x N 1 = N x N 1
6 5 mpteq2dv N x if N = 0 0 N x N 1 = x N x N 1
7 2 6 eqtr4d N dx x N d x = x if N = 0 0 N x N 1
8 oveq2 N = 0 x N = x 0
9 exp0 x x 0 = 1
10 8 9 sylan9eq N = 0 x x N = 1
11 10 mpteq2dva N = 0 x x N = x 1
12 fconstmpt × 1 = x 1
13 11 12 eqtr4di N = 0 x x N = × 1
14 13 oveq2d N = 0 dx x N d x = D × 1
15 ax-1cn 1
16 dvconst 1 D × 1 = × 0
17 15 16 ax-mp D × 1 = × 0
18 14 17 eqtrdi N = 0 dx x N d x = × 0
19 fconstmpt × 0 = x 0
20 18 19 eqtrdi N = 0 dx x N d x = x 0
21 iftrue N = 0 if N = 0 0 N x N 1 = 0
22 21 mpteq2dv N = 0 x if N = 0 0 N x N 1 = x 0
23 20 22 eqtr4d N = 0 dx x N d x = x if N = 0 0 N x N 1
24 7 23 jaoi N N = 0 dx x N d x = x if N = 0 0 N x N 1
25 1 24 sylbi N 0 dx x N d x = x if N = 0 0 N x N 1