| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elznn0nn |
|
| 2 |
|
cnelprrecn |
|
| 3 |
2
|
a1i |
|
| 4 |
|
expcl |
|
| 5 |
4
|
ancoms |
|
| 6 |
|
c0ex |
|
| 7 |
|
ovex |
|
| 8 |
6 7
|
ifex |
|
| 9 |
8
|
a1i |
|
| 10 |
|
dvexp2 |
|
| 11 |
|
difssd |
|
| 12 |
|
eqid |
|
| 13 |
12
|
cnfldtopon |
|
| 14 |
13
|
toponrestid |
|
| 15 |
|
cnn0opn |
|
| 16 |
15
|
a1i |
|
| 17 |
3 5 9 10 11 14 12 16
|
dvmptres |
|
| 18 |
|
ifid |
|
| 19 |
|
id |
|
| 20 |
|
oveq1 |
|
| 21 |
20
|
oveq2d |
|
| 22 |
19 21
|
oveq12d |
|
| 23 |
|
eldifsn |
|
| 24 |
|
0z |
|
| 25 |
|
peano2zm |
|
| 26 |
24 25
|
ax-mp |
|
| 27 |
|
expclz |
|
| 28 |
26 27
|
mp3an3 |
|
| 29 |
23 28
|
sylbi |
|
| 30 |
29
|
adantl |
|
| 31 |
30
|
mul02d |
|
| 32 |
22 31
|
sylan9eqr |
|
| 33 |
32
|
ifeq1da |
|
| 34 |
18 33
|
eqtr3id |
|
| 35 |
34
|
mpteq2dva |
|
| 36 |
17 35
|
eqtr4d |
|
| 37 |
|
eldifi |
|
| 38 |
37
|
adantl |
|
| 39 |
|
simpll |
|
| 40 |
39
|
recnd |
|
| 41 |
|
nnnn0 |
|
| 42 |
41
|
ad2antlr |
|
| 43 |
|
expneg2 |
|
| 44 |
38 40 42 43
|
syl3anc |
|
| 45 |
44
|
mpteq2dva |
|
| 46 |
45
|
oveq2d |
|
| 47 |
2
|
a1i |
|
| 48 |
|
eldifsni |
|
| 49 |
48
|
adantl |
|
| 50 |
|
nnz |
|
| 51 |
50
|
ad2antlr |
|
| 52 |
38 49 51
|
expclzd |
|
| 53 |
38 49 51
|
expne0d |
|
| 54 |
|
eldifsn |
|
| 55 |
52 53 54
|
sylanbrc |
|
| 56 |
|
ovex |
|
| 57 |
56
|
a1i |
|
| 58 |
|
simpr |
|
| 59 |
|
eldifsn |
|
| 60 |
58 59
|
sylib |
|
| 61 |
|
reccl |
|
| 62 |
60 61
|
syl |
|
| 63 |
|
negex |
|
| 64 |
63
|
a1i |
|
| 65 |
|
simpr |
|
| 66 |
41
|
ad2antlr |
|
| 67 |
65 66
|
expcld |
|
| 68 |
56
|
a1i |
|
| 69 |
|
dvexp |
|
| 70 |
69
|
adantl |
|
| 71 |
|
difssd |
|
| 72 |
15
|
a1i |
|
| 73 |
47 67 68 70 71 14 12 72
|
dvmptres |
|
| 74 |
|
ax-1cn |
|
| 75 |
|
dvrec |
|
| 76 |
74 75
|
mp1i |
|
| 77 |
|
oveq2 |
|
| 78 |
|
oveq1 |
|
| 79 |
78
|
oveq2d |
|
| 80 |
79
|
negeqd |
|
| 81 |
47 47 55 57 62 64 73 76 77 80
|
dvmptco |
|
| 82 |
|
2z |
|
| 83 |
82
|
a1i |
|
| 84 |
|
expmulz |
|
| 85 |
38 49 51 83 84
|
syl22anc |
|
| 86 |
85
|
eqcomd |
|
| 87 |
86
|
oveq2d |
|
| 88 |
87
|
negeqd |
|
| 89 |
|
peano2zm |
|
| 90 |
51 89
|
syl |
|
| 91 |
38 49 90
|
expclzd |
|
| 92 |
40 91
|
mulneg1d |
|
| 93 |
88 92
|
oveq12d |
|
| 94 |
|
zmulcl |
|
| 95 |
51 82 94
|
sylancl |
|
| 96 |
38 49 95
|
expclzd |
|
| 97 |
38 49 95
|
expne0d |
|
| 98 |
96 97
|
reccld |
|
| 99 |
40 91
|
mulcld |
|
| 100 |
98 99
|
mul2negd |
|
| 101 |
98 40 91
|
mul12d |
|
| 102 |
38 49 95 90
|
expsubd |
|
| 103 |
|
nncn |
|
| 104 |
103
|
ad2antlr |
|
| 105 |
74
|
a1i |
|
| 106 |
95
|
zcnd |
|
| 107 |
104 105 106
|
sub32d |
|
| 108 |
104
|
times2d |
|
| 109 |
104 40
|
negsubd |
|
| 110 |
108 109
|
eqtrd |
|
| 111 |
110
|
oveq2d |
|
| 112 |
104 40
|
nncand |
|
| 113 |
111 112
|
eqtrd |
|
| 114 |
113
|
oveq1d |
|
| 115 |
107 114
|
eqtrd |
|
| 116 |
115
|
oveq2d |
|
| 117 |
91 96 97
|
divrec2d |
|
| 118 |
102 116 117
|
3eqtr3rd |
|
| 119 |
118
|
oveq2d |
|
| 120 |
101 119
|
eqtrd |
|
| 121 |
93 100 120
|
3eqtrd |
|
| 122 |
121
|
mpteq2dva |
|
| 123 |
46 81 122
|
3eqtrd |
|
| 124 |
36 123
|
jaoi |
|
| 125 |
1 124
|
sylbi |
|