Metamath Proof Explorer


Theorem dvf

Description: The derivative is a function. (Contributed by Mario Carneiro, 8-Aug-2014) (Revised by Mario Carneiro, 9-Feb-2015)

Ref Expression
Assertion dvf F : dom F

Proof

Step Hyp Ref Expression
1 reelprrecn
2 dvfg F : dom F
3 1 2 ax-mp F : dom F