Metamath Proof Explorer


Theorem dvferm1lem

Description: Lemma for dvferm . (Contributed by Mario Carneiro, 24-Feb-2015)

Ref Expression
Hypotheses dvferm.a φ F : X
dvferm.b φ X
dvferm.u φ U A B
dvferm.s φ A B X
dvferm.d φ U dom F
dvferm1.r φ y U B F y F U
dvferm1.z φ 0 < F U
dvferm1.t φ T +
dvferm1.l φ z X U z U z U < T F z F U z U F U < F U
dvferm1.x S = U + if B U + T B U + T 2
Assertion dvferm1lem ¬ φ

Proof

Step Hyp Ref Expression
1 dvferm.a φ F : X
2 dvferm.b φ X
3 dvferm.u φ U A B
4 dvferm.s φ A B X
5 dvferm.d φ U dom F
6 dvferm1.r φ y U B F y F U
7 dvferm1.z φ 0 < F U
8 dvferm1.t φ T +
9 dvferm1.l φ z X U z U z U < T F z F U z U F U < F U
10 dvferm1.x S = U + if B U + T B U + T 2
11 dvfre F : X X F : dom F
12 1 2 11 syl2anc φ F : dom F
13 12 5 ffvelrnd φ F U
14 13 recnd φ F U
15 14 subidd φ F U F U = 0
16 ioossre A B
17 16 3 sselid φ U
18 eliooord U A B A < U U < B
19 3 18 syl φ A < U U < B
20 19 simprd φ U < B
21 17 8 ltaddrpd φ U < U + T
22 breq2 B = if B U + T B U + T U < B U < if B U + T B U + T
23 breq2 U + T = if B U + T B U + T U < U + T U < if B U + T B U + T
24 22 23 ifboth U < B U < U + T U < if B U + T B U + T
25 20 21 24 syl2anc φ U < if B U + T B U + T
26 ne0i U A B A B
27 ndmioo ¬ A * B * A B =
28 27 necon1ai A B A * B *
29 3 26 28 3syl φ A * B *
30 29 simprd φ B *
31 8 rpred φ T
32 17 31 readdcld φ U + T
33 32 rexrd φ U + T *
34 30 33 ifcld φ if B U + T B U + T *
35 mnfxr −∞ *
36 35 a1i φ −∞ *
37 17 rexrd φ U *
38 17 mnfltd φ −∞ < U
39 36 37 30 38 20 xrlttrd φ −∞ < B
40 32 mnfltd φ −∞ < U + T
41 breq2 B = if B U + T B U + T −∞ < B −∞ < if B U + T B U + T
42 breq2 U + T = if B U + T B U + T −∞ < U + T −∞ < if B U + T B U + T
43 41 42 ifboth −∞ < B −∞ < U + T −∞ < if B U + T B U + T
44 39 40 43 syl2anc φ −∞ < if B U + T B U + T
45 xrmin2 B * U + T * if B U + T B U + T U + T
46 30 33 45 syl2anc φ if B U + T B U + T U + T
47 xrre if B U + T B U + T * U + T −∞ < if B U + T B U + T if B U + T B U + T U + T if B U + T B U + T
48 34 32 44 46 47 syl22anc φ if B U + T B U + T
49 avglt1 U if B U + T B U + T U < if B U + T B U + T U < U + if B U + T B U + T 2
50 17 48 49 syl2anc φ U < if B U + T B U + T U < U + if B U + T B U + T 2
51 25 50 mpbid φ U < U + if B U + T B U + T 2
52 51 10 breqtrrdi φ U < S
53 17 52 gtned φ S U
54 17 48 readdcld φ U + if B U + T B U + T
55 54 rehalfcld φ U + if B U + T B U + T 2
56 10 55 eqeltrid φ S
57 17 56 52 ltled φ U S
58 17 56 57 abssubge0d φ S U = S U
59 avglt2 U if B U + T B U + T U < if B U + T B U + T U + if B U + T B U + T 2 < if B U + T B U + T
60 17 48 59 syl2anc φ U < if B U + T B U + T U + if B U + T B U + T 2 < if B U + T B U + T
61 25 60 mpbid φ U + if B U + T B U + T 2 < if B U + T B U + T
62 10 61 eqbrtrid φ S < if B U + T B U + T
63 56 48 32 62 46 ltletrd φ S < U + T
64 56 17 31 ltsubadd2d φ S U < T S < U + T
65 63 64 mpbird φ S U < T
66 58 65 eqbrtrd φ S U < T
67 neeq1 z = S z U S U
68 fvoveq1 z = S z U = S U
69 68 breq1d z = S z U < T S U < T
70 67 69 anbi12d z = S z U z U < T S U S U < T
71 fveq2 z = S F z = F S
72 71 oveq1d z = S F z F U = F S F U
73 oveq1 z = S z U = S U
74 72 73 oveq12d z = S F z F U z U = F S F U S U
75 74 fvoveq1d z = S F z F U z U F U = F S F U S U F U
76 75 breq1d z = S F z F U z U F U < F U F S F U S U F U < F U
77 70 76 imbi12d z = S z U z U < T F z F U z U F U < F U S U S U < T F S F U S U F U < F U
78 29 simpld φ A *
79 19 simpld φ A < U
80 78 37 79 xrltled φ A U
81 iooss1 A * A U U B A B
82 78 80 81 syl2anc φ U B A B
83 82 4 sstrd φ U B X
84 56 rexrd φ S *
85 xrmin1 B * U + T * if B U + T B U + T B
86 30 33 85 syl2anc φ if B U + T B U + T B
87 84 34 30 62 86 xrltletrd φ S < B
88 elioo2 U * B * S U B S U < S S < B
89 37 30 88 syl2anc φ S U B S U < S S < B
90 56 52 87 89 mpbir3and φ S U B
91 83 90 sseldd φ S X
92 eldifsn S X U S X S U
93 91 53 92 sylanbrc φ S X U
94 77 9 93 rspcdva φ S U S U < T F S F U S U F U < F U
95 53 66 94 mp2and φ F S F U S U F U < F U
96 1 91 ffvelrnd φ F S
97 4 3 sseldd φ U X
98 1 97 ffvelrnd φ F U
99 96 98 resubcld φ F S F U
100 56 17 resubcld φ S U
101 17 56 posdifd φ U < S 0 < S U
102 52 101 mpbid φ 0 < S U
103 100 102 elrpd φ S U +
104 99 103 rerpdivcld φ F S F U S U
105 104 13 13 absdifltd φ F S F U S U F U < F U F U F U < F S F U S U F S F U S U < F U + F U
106 95 105 mpbid φ F U F U < F S F U S U F S F U S U < F U + F U
107 106 simpld φ F U F U < F S F U S U
108 15 107 eqbrtrrd φ 0 < F S F U S U
109 gt0div F S F U S U 0 < S U 0 < F S F U 0 < F S F U S U
110 99 100 102 109 syl3anc φ 0 < F S F U 0 < F S F U S U
111 108 110 mpbird φ 0 < F S F U
112 98 96 posdifd φ F U < F S 0 < F S F U
113 111 112 mpbird φ F U < F S
114 fveq2 y = S F y = F S
115 114 breq1d y = S F y F U F S F U
116 115 6 90 rspcdva φ F S F U
117 96 98 116 lensymd φ ¬ F U < F S
118 113 117 pm2.65i ¬ φ