Step |
Hyp |
Ref |
Expression |
1 |
|
dvfsum.s |
|
2 |
|
dvfsum.z |
|
3 |
|
dvfsum.m |
|
4 |
|
dvfsum.d |
|
5 |
|
dvfsum.md |
|
6 |
|
dvfsum.t |
|
7 |
|
dvfsum.a |
|
8 |
|
dvfsum.b1 |
|
9 |
|
dvfsum.b2 |
|
10 |
|
dvfsum.b3 |
|
11 |
|
dvfsum.c |
|
12 |
|
dvfsum.u |
|
13 |
|
dvfsum.l |
|
14 |
|
dvfsum.h |
|
15 |
|
dvfsumlem1.1 |
|
16 |
|
dvfsumlem1.2 |
|
17 |
|
dvfsumlem1.3 |
|
18 |
|
dvfsumlem1.4 |
|
19 |
|
dvfsumlem1.5 |
|
20 |
|
dvfsumlem1.6 |
|
21 |
|
ioossre |
|
22 |
1 21
|
eqsstri |
|
23 |
22 16
|
sselid |
|
24 |
22 15
|
sselid |
|
25 |
24
|
flcld |
|
26 |
|
reflcl |
|
27 |
24 26
|
syl |
|
28 |
|
flle |
|
29 |
24 28
|
syl |
|
30 |
27 24 23 29 18
|
letrd |
|
31 |
|
flbi |
|
32 |
31
|
baibd |
|
33 |
23 25 30 32
|
syl21anc |
|
34 |
33
|
biimpar |
|
35 |
34
|
oveq2d |
|
36 |
35
|
oveq1d |
|
37 |
34
|
oveq2d |
|
38 |
37
|
sumeq1d |
|
39 |
38
|
oveq1d |
|
40 |
36 39
|
oveq12d |
|
41 |
|
simpr |
|
42 |
24
|
adantr |
|
43 |
42
|
flcld |
|
44 |
43
|
peano2zd |
|
45 |
41 44
|
eqeltrd |
|
46 |
|
flid |
|
47 |
45 46
|
syl |
|
48 |
47 41
|
eqtrd |
|
49 |
48
|
oveq2d |
|
50 |
49
|
oveq1d |
|
51 |
23
|
recnd |
|
52 |
27
|
recnd |
|
53 |
51 52
|
subcld |
|
54 |
|
1cnd |
|
55 |
22
|
a1i |
|
56 |
55 7 8 10
|
dvmptrecl |
|
57 |
56
|
recnd |
|
58 |
57
|
ralrimiva |
|
59 |
|
nfcsb1v |
|
60 |
59
|
nfel1 |
|
61 |
|
csbeq1a |
|
62 |
61
|
eleq1d |
|
63 |
60 62
|
rspc |
|
64 |
16 58 63
|
sylc |
|
65 |
53 54 64
|
subdird |
|
66 |
51 52 54
|
subsub4d |
|
67 |
66
|
oveq1d |
|
68 |
64
|
mulid2d |
|
69 |
68
|
oveq2d |
|
70 |
65 67 69
|
3eqtr3d |
|
71 |
70
|
adantr |
|
72 |
50 71
|
eqtrd |
|
73 |
25
|
peano2zd |
|
74 |
3
|
zred |
|
75 |
|
peano2rem |
|
76 |
74 75
|
syl |
|
77 |
|
1red |
|
78 |
74 77 4
|
lesubaddd |
|
79 |
5 78
|
mpbird |
|
80 |
76 4 24 79 17
|
letrd |
|
81 |
|
peano2zm |
|
82 |
3 81
|
syl |
|
83 |
|
flge |
|
84 |
24 82 83
|
syl2anc |
|
85 |
80 84
|
mpbid |
|
86 |
74 77 27
|
lesubaddd |
|
87 |
85 86
|
mpbid |
|
88 |
|
eluz2 |
|
89 |
3 73 87 88
|
syl3anbrc |
|
90 |
9
|
recnd |
|
91 |
90
|
ralrimiva |
|
92 |
|
elfzuz |
|
93 |
92 2
|
eleqtrrdi |
|
94 |
11
|
eleq1d |
|
95 |
94
|
rspccva |
|
96 |
91 93 95
|
syl2an |
|
97 |
|
eqvisset |
|
98 |
|
eqeq2 |
|
99 |
98
|
biimpar |
|
100 |
99 11
|
syl |
|
101 |
97 100
|
csbied |
|
102 |
101
|
eqcomd |
|
103 |
89 96 102
|
fsumm1 |
|
104 |
|
ax-1cn |
|
105 |
|
pncan |
|
106 |
52 104 105
|
sylancl |
|
107 |
106
|
oveq2d |
|
108 |
107
|
sumeq1d |
|
109 |
108
|
oveq1d |
|
110 |
103 109
|
eqtrd |
|
111 |
110
|
adantr |
|
112 |
48
|
oveq2d |
|
113 |
112
|
sumeq1d |
|
114 |
41
|
csbeq1d |
|
115 |
114
|
oveq2d |
|
116 |
111 113 115
|
3eqtr4d |
|
117 |
116
|
oveq1d |
|
118 |
|
fzfid |
|
119 |
|
elfzuz |
|
120 |
119 2
|
eleqtrrdi |
|
121 |
91 120 95
|
syl2an |
|
122 |
118 121
|
fsumcl |
|
123 |
7
|
recnd |
|
124 |
123
|
ralrimiva |
|
125 |
|
nfcsb1v |
|
126 |
125
|
nfel1 |
|
127 |
|
csbeq1a |
|
128 |
127
|
eleq1d |
|
129 |
126 128
|
rspc |
|
130 |
16 124 129
|
sylc |
|
131 |
122 64 130
|
addsubd |
|
132 |
131
|
adantr |
|
133 |
117 132
|
eqtrd |
|
134 |
72 133
|
oveq12d |
|
135 |
53 64
|
mulcld |
|
136 |
135
|
adantr |
|
137 |
64
|
adantr |
|
138 |
122 130
|
subcld |
|
139 |
138
|
adantr |
|
140 |
136 137 139
|
nppcan3d |
|
141 |
134 140
|
eqtrd |
|
142 |
|
peano2re |
|
143 |
27 142
|
syl |
|
144 |
23 143
|
leloed |
|
145 |
20 144
|
mpbid |
|
146 |
40 141 145
|
mpjaodan |
|
147 |
|
ovex |
|
148 |
|
nfcv |
|
149 |
|
nfcv |
|
150 |
|
nfcv |
|
151 |
149 150 59
|
nfov |
|
152 |
|
nfcv |
|
153 |
|
nfcv |
|
154 |
|
nfcv |
|
155 |
153 154 125
|
nfov |
|
156 |
151 152 155
|
nfov |
|
157 |
|
id |
|
158 |
|
fveq2 |
|
159 |
157 158
|
oveq12d |
|
160 |
159 61
|
oveq12d |
|
161 |
158
|
oveq2d |
|
162 |
161
|
sumeq1d |
|
163 |
162 127
|
oveq12d |
|
164 |
160 163
|
oveq12d |
|
165 |
148 156 164 14
|
fvmptf |
|
166 |
16 147 165
|
sylancl |
|
167 |
135 130 122
|
subadd23d |
|
168 |
146 166 167
|
3eqtr4d |
|