Metamath Proof Explorer


Theorem dvfsumrlim3

Description: Conjoin the statements of dvfsumrlim and dvfsumrlim2 . (This is useful as a target for lemmas, because the hypotheses to this theorem are complex, and we don't want to repeat ourselves.) (Contributed by Mario Carneiro, 18-May-2016)

Ref Expression
Hypotheses dvfsum.s S = T +∞
dvfsum.z Z = M
dvfsum.m φ M
dvfsum.d φ D
dvfsum.md φ M D + 1
dvfsum.t φ T
dvfsum.a φ x S A
dvfsum.b1 φ x S B V
dvfsum.b2 φ x Z B
dvfsum.b3 φ dx S A d x = x S B
dvfsum.c x = k B = C
dvfsumrlim.l φ x S k S D x x k C B
dvfsumrlim.g G = x S k = M x C A
dvfsumrlim.k φ x S B 0
dvfsumrlim3.1 x = X B = E
Assertion dvfsumrlim3 φ G : S G dom G L X S D X G X L E

Proof

Step Hyp Ref Expression
1 dvfsum.s S = T +∞
2 dvfsum.z Z = M
3 dvfsum.m φ M
4 dvfsum.d φ D
5 dvfsum.md φ M D + 1
6 dvfsum.t φ T
7 dvfsum.a φ x S A
8 dvfsum.b1 φ x S B V
9 dvfsum.b2 φ x Z B
10 dvfsum.b3 φ dx S A d x = x S B
11 dvfsum.c x = k B = C
12 dvfsumrlim.l φ x S k S D x x k C B
13 dvfsumrlim.g G = x S k = M x C A
14 dvfsumrlim.k φ x S B 0
15 dvfsumrlim3.1 x = X B = E
16 1 2 3 4 5 6 7 8 9 10 11 13 dvfsumrlimf φ G : S
17 1 2 3 4 5 6 7 8 9 10 11 12 13 14 dvfsumrlim φ G dom
18 3 adantr φ D X X S M
19 4 adantr φ D X X S D
20 5 adantr φ D X X S M D + 1
21 6 adantr φ D X X S T
22 7 adantlr φ D X X S x S A
23 8 adantlr φ D X X S x S B V
24 9 adantlr φ D X X S x Z B
25 10 adantr φ D X X S dx S A d x = x S B
26 12 3adant1r φ D X X S x S k S D x x k C B
27 14 adantr φ D X X S x S B 0
28 simprr φ D X X S X S
29 simprl φ D X X S D X
30 1 2 18 19 20 21 22 23 24 25 11 26 13 27 28 29 dvfsumrlim2 φ D X X S G L G X L X / x B
31 28 adantr φ D X X S G L X S
32 nfcvd X S _ x E
33 32 15 csbiegf X S X / x B = E
34 31 33 syl φ D X X S G L X / x B = E
35 30 34 breqtrd φ D X X S G L G X L E
36 35 exp42 φ D X X S G L G X L E
37 36 com24 φ G L X S D X G X L E
38 37 3impd φ G L X S D X G X L E
39 16 17 38 3jca φ G : S G dom G L X S D X G X L E