Metamath Proof Explorer


Theorem dvfsumrlimf

Description: Lemma for dvfsumrlim . (Contributed by Mario Carneiro, 18-May-2016)

Ref Expression
Hypotheses dvfsum.s S = T +∞
dvfsum.z Z = M
dvfsum.m φ M
dvfsum.d φ D
dvfsum.md φ M D + 1
dvfsum.t φ T
dvfsum.a φ x S A
dvfsum.b1 φ x S B V
dvfsum.b2 φ x Z B
dvfsum.b3 φ dx S A d x = x S B
dvfsum.c x = k B = C
dvfsumrlimf.g G = x S k = M x C A
Assertion dvfsumrlimf φ G : S

Proof

Step Hyp Ref Expression
1 dvfsum.s S = T +∞
2 dvfsum.z Z = M
3 dvfsum.m φ M
4 dvfsum.d φ D
5 dvfsum.md φ M D + 1
6 dvfsum.t φ T
7 dvfsum.a φ x S A
8 dvfsum.b1 φ x S B V
9 dvfsum.b2 φ x Z B
10 dvfsum.b3 φ dx S A d x = x S B
11 dvfsum.c x = k B = C
12 dvfsumrlimf.g G = x S k = M x C A
13 fzfid φ x S M x Fin
14 9 ralrimiva φ x Z B
15 14 adantr φ x S x Z B
16 elfzuz k M x k M
17 16 2 eleqtrrdi k M x k Z
18 11 eleq1d x = k B C
19 18 rspccva x Z B k Z C
20 15 17 19 syl2an φ x S k M x C
21 13 20 fsumrecl φ x S k = M x C
22 21 7 resubcld φ x S k = M x C A
23 22 12 fmptd φ G : S