Step |
Hyp |
Ref |
Expression |
1 |
|
dvfsum.s |
|
2 |
|
dvfsum.z |
|
3 |
|
dvfsum.m |
|
4 |
|
dvfsum.d |
|
5 |
|
dvfsum.md |
|
6 |
|
dvfsum.t |
|
7 |
|
dvfsum.a |
|
8 |
|
dvfsum.b1 |
|
9 |
|
dvfsum.b2 |
|
10 |
|
dvfsum.b3 |
|
11 |
|
dvfsum.c |
|
12 |
|
dvfsumrlim.l |
|
13 |
|
dvfsumrlim.g |
|
14 |
|
dvfsumrlim.k |
|
15 |
|
ioossre |
|
16 |
1 15
|
eqsstri |
|
17 |
|
simprl |
|
18 |
16 17
|
sselid |
|
19 |
18
|
rexrd |
|
20 |
18
|
renepnfd |
|
21 |
|
icopnfsup |
|
22 |
19 20 21
|
syl2anc |
|
23 |
6
|
rexrd |
|
24 |
17 1
|
eleqtrdi |
|
25 |
23
|
adantr |
|
26 |
|
elioopnf |
|
27 |
25 26
|
syl |
|
28 |
24 27
|
mpbid |
|
29 |
28
|
simprd |
|
30 |
|
df-ioo |
|
31 |
|
df-ico |
|
32 |
|
xrltletr |
|
33 |
30 31 32
|
ixxss1 |
|
34 |
23 29 33
|
syl2an2r |
|
35 |
34 1
|
sseqtrrdi |
|
36 |
11
|
cbvmptv |
|
37 |
14
|
adantr |
|
38 |
36 37
|
eqbrtrrid |
|
39 |
35 38
|
rlimres2 |
|
40 |
16
|
a1i |
|
41 |
40 7 8 10
|
dvmptrecl |
|
42 |
41
|
adantrr |
|
43 |
42
|
recnd |
|
44 |
|
rlimconst |
|
45 |
40 43 44
|
syl2an2r |
|
46 |
35 45
|
rlimres2 |
|
47 |
41
|
ralrimiva |
|
48 |
47
|
adantr |
|
49 |
35
|
sselda |
|
50 |
11
|
eleq1d |
|
51 |
50
|
rspccva |
|
52 |
48 49 51
|
syl2an2r |
|
53 |
42
|
adantr |
|
54 |
|
simpll |
|
55 |
|
simplrl |
|
56 |
|
simplrr |
|
57 |
|
elicopnf |
|
58 |
18 57
|
syl |
|
59 |
58
|
simplbda |
|
60 |
54 55 49 56 59 12
|
syl122anc |
|
61 |
22 39 46 52 53 60
|
rlimle |
|