Step |
Hyp |
Ref |
Expression |
1 |
|
dvgt0.a |
|
2 |
|
dvgt0.b |
|
3 |
|
dvgt0.f |
|
4 |
|
dvge0.d |
|
5 |
|
dvge0.x |
|
6 |
|
dvge0.y |
|
7 |
|
dvge0.l |
|
8 |
1 2 3 4
|
dvgt0lem1 |
|
9 |
8
|
exp31 |
|
10 |
5 6 9
|
mp2and |
|
11 |
10
|
imp |
|
12 |
|
elrege0 |
|
13 |
12
|
simprbi |
|
14 |
11 13
|
syl |
|
15 |
|
cncff |
|
16 |
3 15
|
syl |
|
17 |
16 6
|
ffvelrnd |
|
18 |
16 5
|
ffvelrnd |
|
19 |
17 18
|
resubcld |
|
20 |
19
|
adantr |
|
21 |
|
iccssre |
|
22 |
1 2 21
|
syl2anc |
|
23 |
22 6
|
sseldd |
|
24 |
22 5
|
sseldd |
|
25 |
23 24
|
resubcld |
|
26 |
25
|
adantr |
|
27 |
24 23
|
posdifd |
|
28 |
27
|
biimpa |
|
29 |
|
ge0div |
|
30 |
20 26 28 29
|
syl3anc |
|
31 |
14 30
|
mpbird |
|
32 |
31
|
ex |
|
33 |
17 18
|
subge0d |
|
34 |
32 33
|
sylibd |
|
35 |
17
|
leidd |
|
36 |
|
fveq2 |
|
37 |
36
|
breq1d |
|
38 |
35 37
|
syl5ibrcom |
|
39 |
24 23
|
leloed |
|
40 |
7 39
|
mpbid |
|
41 |
34 38 40
|
mpjaod |
|