| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvgt0.a |
|
| 2 |
|
dvgt0.b |
|
| 3 |
|
dvgt0.f |
|
| 4 |
|
dvge0.d |
|
| 5 |
|
dvge0.x |
|
| 6 |
|
dvge0.y |
|
| 7 |
|
dvge0.l |
|
| 8 |
1 2 3 4
|
dvgt0lem1 |
|
| 9 |
8
|
exp31 |
|
| 10 |
5 6 9
|
mp2and |
|
| 11 |
10
|
imp |
|
| 12 |
|
elrege0 |
|
| 13 |
12
|
simprbi |
|
| 14 |
11 13
|
syl |
|
| 15 |
|
cncff |
|
| 16 |
3 15
|
syl |
|
| 17 |
16 6
|
ffvelcdmd |
|
| 18 |
16 5
|
ffvelcdmd |
|
| 19 |
17 18
|
resubcld |
|
| 20 |
19
|
adantr |
|
| 21 |
|
iccssre |
|
| 22 |
1 2 21
|
syl2anc |
|
| 23 |
22 6
|
sseldd |
|
| 24 |
22 5
|
sseldd |
|
| 25 |
23 24
|
resubcld |
|
| 26 |
25
|
adantr |
|
| 27 |
24 23
|
posdifd |
|
| 28 |
27
|
biimpa |
|
| 29 |
|
ge0div |
|
| 30 |
20 26 28 29
|
syl3anc |
|
| 31 |
14 30
|
mpbird |
|
| 32 |
31
|
ex |
|
| 33 |
17 18
|
subge0d |
|
| 34 |
32 33
|
sylibd |
|
| 35 |
17
|
leidd |
|
| 36 |
|
fveq2 |
|
| 37 |
36
|
breq1d |
|
| 38 |
35 37
|
syl5ibrcom |
|
| 39 |
24 23
|
leloed |
|
| 40 |
7 39
|
mpbid |
|
| 41 |
34 38 40
|
mpjaod |
|