Step |
Hyp |
Ref |
Expression |
1 |
|
dvgt0.a |
|
2 |
|
dvgt0.b |
|
3 |
|
dvgt0.f |
|
4 |
|
dvgt0lem.d |
|
5 |
|
iccssxr |
|
6 |
|
simplrl |
|
7 |
5 6
|
sselid |
|
8 |
|
simplrr |
|
9 |
5 8
|
sselid |
|
10 |
|
iccssre |
|
11 |
1 2 10
|
syl2anc |
|
12 |
11
|
ad2antrr |
|
13 |
12 6
|
sseldd |
|
14 |
12 8
|
sseldd |
|
15 |
|
simpr |
|
16 |
13 14 15
|
ltled |
|
17 |
|
ubicc2 |
|
18 |
7 9 16 17
|
syl3anc |
|
19 |
18
|
fvresd |
|
20 |
|
lbicc2 |
|
21 |
7 9 16 20
|
syl3anc |
|
22 |
21
|
fvresd |
|
23 |
19 22
|
oveq12d |
|
24 |
23
|
oveq1d |
|
25 |
|
iccss2 |
|
26 |
25
|
ad2antlr |
|
27 |
3
|
ad2antrr |
|
28 |
|
rescncf |
|
29 |
26 27 28
|
sylc |
|
30 |
4
|
ad2antrr |
|
31 |
1
|
ad2antrr |
|
32 |
31
|
rexrd |
|
33 |
2
|
ad2antrr |
|
34 |
|
elicc2 |
|
35 |
31 33 34
|
syl2anc |
|
36 |
6 35
|
mpbid |
|
37 |
36
|
simp2d |
|
38 |
|
iooss1 |
|
39 |
32 37 38
|
syl2anc |
|
40 |
33
|
rexrd |
|
41 |
|
elicc2 |
|
42 |
31 33 41
|
syl2anc |
|
43 |
8 42
|
mpbid |
|
44 |
43
|
simp3d |
|
45 |
|
iooss2 |
|
46 |
40 44 45
|
syl2anc |
|
47 |
39 46
|
sstrd |
|
48 |
30 47
|
fssresd |
|
49 |
|
ax-resscn |
|
50 |
49
|
a1i |
|
51 |
|
cncff |
|
52 |
3 51
|
syl |
|
53 |
52
|
ad2antrr |
|
54 |
|
fss |
|
55 |
53 49 54
|
sylancl |
|
56 |
|
iccssre |
|
57 |
13 14 56
|
syl2anc |
|
58 |
|
eqid |
|
59 |
58
|
tgioo2 |
|
60 |
58 59
|
dvres |
|
61 |
50 55 12 57 60
|
syl22anc |
|
62 |
|
iccntr |
|
63 |
13 14 62
|
syl2anc |
|
64 |
63
|
reseq2d |
|
65 |
61 64
|
eqtrd |
|
66 |
65
|
feq1d |
|
67 |
48 66
|
mpbird |
|
68 |
67
|
fdmd |
|
69 |
13 14 15 29 68
|
mvth |
|
70 |
67
|
ffvelrnda |
|
71 |
|
eleq1 |
|
72 |
70 71
|
syl5ibcom |
|
73 |
72
|
rexlimdva |
|
74 |
69 73
|
mpd |
|
75 |
24 74
|
eqeltrrd |
|